
Session Layer Burst Switching for High Performance Data
Movement

Ezra Kissel and Martin Swany
Department of Computer & Information Sciences

University of Delaware, Newark, DE 19716
{kissel, swany}@cis.udel.edu

Abstract—High performance data movement remains a key problem
despite continuing advances in the link speed of networks. The resurgent
trend of dynamic networks, in which dedicated network resources can
be requested and reserved on-demand, is contributing to an increasingly
heterogeneous network landscape that is pushing the limits of existing
transport layer protocols. We argue that the effective use of such networks
will benefit from a data movement service that departs from traditional
approaches by using a session layer protocol to manage the end-to-end
connection.

This paper introduces Session Layer Burst Switching (SLaBS) as
an architecture for improving efficiency and utilization of dynamically
provisioned network resources. Instead of reserving a dedicated “circuit”
per application, SLaBS forms data bursts, at transport-layer gateways
in the network, which are able to intelligently schedule and switch these
bursts along allocated network paths as they become available. Using
session-layer protocol data units, called “slabs”, significant amounts of
data can be buffered. This allows the burst size to be adapted to the
characteristics of the network path and optimally transferred via explicit
buffers negotiated between gateways. We have implemented a proof-of-
concept prototype of SLaBS and used it to carry out some initial transfer
tests. An analysis of slab management and the role of buffering in the
network is also presented.

I. INTRODUCTION

Achieving reliable, high-speed data transfer performance remains
a “holy grail” for many in the research and education (R&E) and
e-Science communities, and commonly for those within the high
performance network area itself. While available link and backbone
capacity have rapidly increased, the achievable throughput for typical
end-to-end (E2E) applications has failed to increase commensurately.
In many cases, application throughput may be significantly less than
what is theoretically achievable unless a considerable amount of effort
is spent on host, application, and network “tuning” by users and
network administrators alike. At the same time, processor capability
is growing, and thus the performance gap, in terms of cycles per byte
transferred, is continuing to widen.

The resurgent trend of dynamic networks, in which network
resources can be requested and reserved, offers opportunities as
well as challenges. Dynamic requests for some sort of differentiated
network service have been possible, in various forms, for quite some
time. The emergence of wave-division multiplexing in optical links,
however, changes the environment in a way that is analogous to
the shift toward multiple cores and away from frequency scaling in
processors. Essentially, it is less expensive to purchase and operate
ten 10GE links than a single 100GE link 1. With current network
architectures, it is arguably more difficult to effectively use these
links.

Thus a leading theory for utilizing many parallel links involves
dynamically allocating some of them to high-demand flows. This

1While the cost of 100GE interfaces will certainly drop, this is a general
observation.

model effectively creates a “hybrid” network that involves both shared
network segments and dedicated backbone links along an end-to-end
(E2E) path. Traversing such hybrid paths is problematic for com-
monly used transport-layer protocols like the Transmission Control
Protocol (TCP) where conflicting interactions between loss events at
the edge, and the traversal of high-latency links, can lead to poor
throughput. Backbone links are often engineered and provisioned to
be virtually loss free, and temporarily dedicated links should always
be loss free for traffic that does not exceed the bandwidth allocation.
The key issue is that the lossless, long-haul networks interact poorly
with “access layer” networks which, by their design and given the
nature of statistical multiplexing, frequently experience some amount
of loss.

In the Phoebus project, we introduced a data movement service
based on a session-layer protocol that binds E2E communication
to a “session”, decoupling the context from a single transport-layer
connection. This system is based on session-aware, transport-layer
gateways. These gateways allow us to adapt or change transport
protocols and effect tuning between network segments [1]. Phoebus
demonstrates improved performance over a variety of edge and wide-
area network scenarios. This work extends that model of decoupling
into the time domain by assuming significant buffering in the network.
This enables the asynchronous transfer of larger amounts of data for
better utilization of lossless links and improved overall throughput.

This paper introduces Session-Layer Burst Switching, or “SLaBS”,
which improves utilization and performance of dedicated wide-area
network resources. The key contribution of this work is the novel
application of burst switching using explicit session-layer signaling.
We argue that by using fast, plentiful buffer media (e.g. RAM, solid
state disk (SSD), etc.) to stage large aggregations of data in slabs,
we can enable optimal utilization of dedicated network paths via
coordinating gateway-to-gateway bursts at channel capacity for short
periods.

II. OVERVIEW

We are not alone in claiming that it is time to rethink, and
potentially augment, the modes of operation of the Internet. Our
session-based approach provides a framework for high throughput
data movement in capable networks, but it also subsumes models such
as that of Delay Tolerant Networking [2] (DTN), which generally
targets less capable networks2. A key observation in our model is
that bulk data transfer applications are not, in general, sensitive to
the latency of a single segment of data, but rather to the overall time
it takes to complete the transfer. Moreover, many applications only
depend on a certain targeted completion time and thus can readily

2Although the exploration of this case is beyond the scope of this paper.



make use of best-effort “scavenger” services or scheduled resources,
as appropriate.

We have asserted that current end-to-end transport protocols are
failing to serve the needs of today’s networks. This issue has been
observed and studied, but the performance gap continues to grow.
Our hypothesis is that current end-to-end paradigms must be revisited
and revised to provide scalable performance for terabit (and beyond)
network infrastructures. One possible alternative to today’s end-to-
end transport paradigms is that of coarse-grained burst switching.

Burst switching garners its benefit from amortizing overheads over
a large data transfer, including overheads from the protocol and from
channel arbitration. In order to maintain uninterrupted data movement
with our bursting model, relatively significant buffering is required
to assemble the bursts being stored and forwarded. The role of
buffering in network switches has been a key design consideration
since networks became packet switched. Our efforts will attempt
to revise current models and apply them to modern dynamically
provisioned networks. Our view is that effective use of bursting in
terabit speed networks will involve a radical rethinking of network
protocols and the role of buffering in them.

We argue that, as data movement requirements, and network
speeds, continue to increase, end-to-end closed-loop feedback control
for ultra-high speed networks is increasingly strained. Perhaps more
importantly, it is not always necessary. This is because closed-loop
flow control becomes slower to respond as the feedback loop grows.
A particular flow must infer network conditions and availability and
thus may become either too conservative or too aggressive based on
limited observations. The “length” of the feedback loop in end-to-end
TCP is essentially the number of segments that need to be “in-flight”
at any given time. This fact tends to degrade performance along long-
distance, high BDP network paths [3] that are not engineered to be
virtually loss-free. As the amount of data along the path increases,
the performance of TCP over large RTT links suffers dramatically as
the feedback loop becomes less responsive and cannot adapt quickly
enough to congestion and loss.

In our SLaBS bursting model, we assume more control over core
network links, and the flow control is negotiated out of band, on
a session-based control channel. Congestion and congestive loss are
no longer an issue in dynamic backbone networks with dedicated
resources. This allows for the utilization of open-loop flow control
over these long distance, high-bandwidth links. Flow control is
managed at a much coarser granularity and traffic is no longer
statistically multiplexed, but rather the capacity for a data burst over
a dedicated channel is guaranteed for a certain time slot. An open
loop model over the core allows us to determine ahead of time what
resources are necessary and to pace burst transfers based on buffer
and throughput capabilities at various points in the network.

We also consider the question of buffer management within the
network. In most current cases, network buffers are limited in size
and are easily overrun by aggressive senders. Part of TCP’s success is
in enforcing friendliness among competing flows to effectively work
around these limitations. We propose a model that introduces the
notion of explicit buffers that are immune to being overrun. In the
core network, flow credits are issued by the receiving slab daemon
that bound the total amount of transmitted data. At the edge, slabs are
only filled as there is space available. If additional space cannot be
allocated to a slab, then the TCP buffers will fill and the connection
will block. Due to the relatively short RTT of these edge connections
(given an edge’s close proximity to a gateway), when TCP again
offers a non-zero window it will rapidly be able to fill the available
slab space. This solution is also possible in Layer 2 networks with

pause frames, and IP networks with source quench ICMP, but it is
difficult to scale at Ethernet frame resolution (1-8k). TCP gives us
ideal back pressure in this case. An additional safeguard is to perform
slab admission control, or policing at the edge, to keep the load from
edge to core reasonable.

A host of new issues must be considered and addressed as
we merge the traditional closed-loop flow control system over the
IP network and the SLaBS model enabled by dynamic networks.
Although we have asserted that an open loop control model can
provide certain benefits in such networks, the details of how dy-
namic network technologies are reserved, provisioned, scheduled,
and utilized must be analyzed and we must study appropriate buffer
and burst parameters for various cases. In the SLaBS model the
explicit buffers themselves, slabs, become the basic unit of data that
is switched along the network core. Subsequently, slab formation,
size, scheduling, and flow control are all subject to allocation time,
the current state of the core network, and the policies enforced by
the SLaBS nodes.

III. SLABS: A BUFFER AND BURST MODEL

Our model of a slab being switched across a reserved network
core is a natural extension of burst switching. The key idea of
burst switching is that the overhead of processing (including lookup,
forwarding and arbitration) can be mitigated by sending a burst of
data, or in other words a relatively large PDU rather than the relatively
small network and transport layer PDUs common today. This model,
which is reasonably old [4] has seen a resurgence of interest. SLaBS
applies this idea at very coarse level of granularity.

The SLaBS bursting model is predicated on three key network
qualities. These, along with the level of burst granularity, differ-
entiate it from previous bursting approaches. SLaBS assumes: (i)
the existence of a session-layer protocol for IP networks, (ii) the
existence of transport-layer gateways that speak this session-layer
protocol and offer relatively significant amounts of buffering, and (iii)
the availability of dedicated network resources (bandwidth), whether
they be static or dynamic.

Our architecture utilizes a session protocol we call XSP for eX-
tensible Session Protocol. This protocol was developed for Phoebus
but has been progressively generalized. XSP defines session-layer
protocol data units (SPDUs). We call these SPDUs “slabs” in the
context of an XSP session. In the SLaBS model, these SPDUs are
marshaled and burst over backbone links. The details of XSP are
beyond the scope of this paper.

The transport layer gateways in SLaBS are currently based on
the Phoebus Gateway. Phoebus uses specialized PCs running a Unix
variant, but versions that run directly on dedicated IP routers are
possible (and in development.) Due to the different demands on the
current systems (and as they are PCs now) they can have significant
amounts of DRAM. This allows us to buffer large bursts that can still
be streamed out at line rate on 10G interfaces.

The SLaBS model leverages dedicated resources, which essentially
implies some amount of bandwidth dedication. This can take the form
of MPLS tunnels, VLANs, SONET timeslots, or dedicated DWDM
lambdas. A dedicated channel allows us to use efficient protocols,
including application-controlled UDP bursts, rate-based transport pro-
tocols and even emerging standards such as RDMA over Converged
Ethernet (RoCE). We can potentially utilize any of a family of
transports and link layer protocols in order to minimize overhead and
maximize channel utilization. The dedicated networks in question
could be any sort of differentiated service tunnel, or optical link
such as those in passive optical networks [5] (PONs), the knowledge



Fig. 1. Session layer formation of slabs where control information is signaled out of band. Multiple SPDUs are multiplexed into a single data burst for
optimized transmission.

of which allows us to optimize the protocol and link usage. Even,
in fact, a shared link with policy such that non-responsive bursts
of data would not be disruptive to other service. SLaBS may be
particularly well-suited within emerging long-reach PONs [6] (LR-
PONs) where we are in a position to enable coarse-grained scheduling
of multiplexed data bursts over passively switched, high-capacity
optical paths.

Our architecture enables access to resources and services via
XSP, which is based on the concept of a session. An XSP session
contains the context for the end-to-end connection and provides for
key protocol issues like E2E integrity assurance. The session context
also manages explicit communication with, and among, the session
gateways. An XSP-aware client (or proxy) communicates with the
ingress session gateway and begins streaming data. This takes the
form of a special-case SPDU that is of unspecified length, and
which is essentially delimited by an eventual closing of the transport
connection. This data is marshaled into slabs, or SPDUs, for that
session. In Phoebus, gateways maintain a connection for each of
the sessions, and forward or stream SPDUs. In the SLaBS model,
complete SPDUs are multiplexed into a session connection dedicated
for bursting. Again, these bursts may contain SPDUs from one or
more E2E sessions. These bursts are formed explicitly by SLaBS
gateways as opposed to reactive, opportunistic bursting, as found in
most previous burst models.

There is an inherent relationship between the amount of buffering
required and the provisioning latency of the network. To effectively
saturate an optical network core with significant provisioning latency,
there is a need for substantial buffering capability at the SLaBS node.
However, there is no reason why a given SLaBS node needs to be
a single physical host. Both for capacity and redundancy, we can
imagine these entities as clusters of slab elements. In this model, we
still envision the bandwidth of a dedicated link as being time-division
multiplexed, as it is our assertion that the network-level utilization is
easier to achieve with N elements sending at their maximum rate for
1/Nth of a time slot than with all elements trying to use 1/Nth of the
bandwidth of a given channel. We will investigate a simple token-
based protocol to enable this sort of cluster-based burst collusion.

IV. IMPLEMENTATION

The SLaBS model forms data bursts for three primary reasons: (i)
to better schedule and optimize transmission of slabs over dedicated
network resources, (ii) to reduce protocol overhead, and (iii) to
hide provisioning latency incurred during dynamic network resource
allocation. In order to realize these optimizations, a mechanism is
required to coalesce multiple buffered SPDUs arriving at the SLaBS
gateway into larger slab units of data, and efficiently burst them over

the network core. We call this technique for forming session-layer
PDUs “slabbing”, which is enabled via XSP and implemented within
the SLaBS gateway. The following describes this mechanism and
provides an overview of our prototype SLaBS implementation.

Our representative data transfer model is one of transparently
maximizing network utilization for applications through a series
of gateways within the network. Our previous work with Phoebus
provides such an architecture with gateways speaking XSP. The
SLaBS module described here extends Phoebus with adaptive SPDU
buffering and slabbing capabilities along with a separate data channel
for efficient slab transmission. Buffers are currently implemented by
mapping the underlying buffer space to contiguous regions in virtual
memory, requiring a gateway to have a reasonable amount of DRAM
and memory bandwidth to be effective.

A SLaBS gateway accepts XSP session requests from end-host
applications, or neighboring gateways, which manage one or more
underlying transport connections. Each session is identified with an
active session ID that associates the established end-to-end path.
There is also an open session between gateway peers within the
SLaBS network that allows for the exchange of per-flow session state
and the signaling of slab transfer control information. Our prototype
implementation uses a TCP connection to implement this control
channel. Once the ingress SLaBS buffers fill and there is sufficient
data, a burst may be formed and transferred to the next intermediate
or egress gateway. Figure 1 illustrates this mechanism. As SPDUs
are buffered at the SLaBS gateway, they are multiplexed into a larger
SPDU during burst formation. Thus, each burst may contain one or
more SPDUs and is itself an SPDU. For example, sessions s1, s2,
and s3 have SPDUs of length 4, 9, and 3, respectively, which are
then multiplexed within the newly formed slab SPDU with a length
of 16. We employ a simple strategy for selecting buffered SPDU
lengths that fairly distributes the SPDUs within the slab based on
their current buffer capacity. This selection may be further optimized
based on knowledge of the network path and information about the
rate at which the buffers fill.

Before the slab is transmitted, control information is sent to enable
demultiplexing of the SPDUs at the egress SLaBS gateway. We have
defined a slab control SPDU within XSP that contains information
about the slab being transmitted, including the number and total
length of all multiplexed SPDUs within the slab and an associated
record for each. The slab record identifies the session ID of the SPDU
and describes the SPDU slab offset, the length of the SPDU, and a
CRC field for data error correction at the SPDU level of granularity.
This control information is signaled out-of-band via XSP leaving the
data channel free to transmit the slab without additional overhead.
An acknowledgement is sent back over the control channel once a



slab has been successfully received along with any information about
slab errors that may have occurred during transmission.

One of our goals is to evaluate SLaBS performance when gate-
ways are connected via high-bandwidth, high-latency dedicated links,
requiring a data channel that can efficiently burst slabs from one
gateway to another. We investigated and eliminated TCP as a possi-
bility for this application due to the known performance issues over
large BDP networks as previously described. User space protocols
such as UDT[7] help in some cases but suffer from costly overhead
with a level of reliability that may not be necessary for dedicated
links. Our prototype SLaBS implementation uses standard UDP over
the data channel in order to better approximate the performance of
lower-layer approaches in a testbed environment. Our preliminary
results indicate that RDMA-based protocols supported with XSP
signaling will provide further performance improvements to our
SLaBS bursting model.

V. EXPERIMENTAL EVALUATION

Fig. 2. 10G Experimental Testbed with two SLaBS Gateways.

Here we present some early experimental results of our SLaBS
prototype. We show the performance of the popular file transfer tool
GridFTP[8] and contrast this with benchmarks obtained using iperf 3.
All results were collected from a testbed environment consisting of
7 nodes connected with 10Gb/s Myricom Ethernet NICs, each node
having two 10Gb/s interfaces. The testbed forms a linear network
topology with client and server nodes at the edges (A and B), two
SLaBS gateways in the middle (GW), and 3 delay and rate limiting
nodes (netem) segmenting the network into representative LAN and
WAN segments as shown in Figure 2. The edge host and netem nodes
were Sun X2200 servers with quad-core AMD Opteron CPUs and
4GB of RAM, while the gateway systems contained AMD Phenom
II X4 processors and included 8GB of high-speed DDR2 RAM.

In order to simulate realistic network environments, we required a
way to introduce both delay and bottleneck (rate-limited) conditions
along various segments in our testbed. We utilized the netem Linux
kernel module [9] to induce delay on both the LAN and WAN
segments. In order to create bottlenecks and control the edge sending
rate, we took advantage of PSpacer [10], which enables configurable
and precise network bandwidth control for 10Gb Ethernet. This
testbed setup allowed us to evaluate direct end-to-end connections as
well as connections over SLaBS using identical paths, guaranteeing
the same network conditions.

We applied standard TCP tuning to each system to ensure that
connections would not be buffer limited, and the default CUBIC TCP
congestion control algorithm in Linux kernel 2.6.26 was used in each
of these experiments. The default UDP recv buffer size was increased
to 128MB to avoid dropped datagrams due to concurrent SLaBS
processing on the gateway systems. Additionally, appropriate NIC
driver tuning was performed to ensure that the network hardware

3Popular network measurement tool – see http://iperf.sourceforge.net

itself did not impose any artificial limitations on performance. We
also avoided local filesystem bottlenecks by performing memory-to-
memory transfers for each experiment.

15 30 60 90 120
0

1

2

3

4

5

time (s)

G
b

/s

 

 

iperf SLaBS

iperf Direct

GridFTP SlaBS

GridFTP Direct

(a) Parallel streams competing for 5G WAN bottleneck with 115ms
RTT.

10 20 30 40 50 60 70 80 90 100 110
0

1

2

3

4

5

time (s)

G
b

/s

 

 

Direct 25ms

Direct 75ms

Direct 125ms

Direct 175ms

SLaBS 25ms

SLaBS 75ms

SLaBS 125ms

SLaBS 175ms

(b) Comparing GridFTP transfers over 5G WAN bottleneck with
increasing RTT, with and without SLaBS.

.5 1.5 2.5 3.5 4.5
0

1

2

3

4

5

6

7

8

9

10

offered rate (Gb/s)

G
b

/s

 

 

.5 1.5 2.5 3.5 4.5
0

250

500

750

1000

1250

1500

1750

2000

2250

2500

m
s

 

 

slab receive interval

slab transfer duration

slab formation time

offered rate

achieved rate

burst rate

(c) Bursting performance with a 128MB SPDU “slab” size.

Fig. 3. SLaBS Performance Measurements

A. Preliminary Results

Our first experiment tested our hypothesis that SLaBS would
improve performance for a number of streams competing for a



fixed amount of bandwidth over a shared network path. To that
end, we created a 5Gb/s bottleneck with 115ms latency (RTT) on
the WAN segment between SLaBS gateways and simulated typical
regional network latency with 10ms RTT on the edge links. We
ran both GridFTP and iperf tests over the direct path and enabled
SLaBS transfers with the Phoebus XIO driver for GridFTP and the
transparent XSP wrapper library for iperf, respectively. We used 4
parallel streams for each run to allow each stream to compete for the
available bottleneck bandwidth. Figure 3a shows the final average
rate over the total transfer duration for these 4 cases. Each data point
is the average of 5 identical runs.

It is clear that transfers using SLaBS show substantial gains over
the direct case. By virtue of having very little overhead, iperf nearly
saturates the 5G bottleneck with the help of SLaBS bursting and
achieves a 14% improvement over the direct iperf transfer after 120
seconds. The GridFTP transfers do not perform as aggressively, but
we see an even larger improvement of 18% with SLaBS enabled
after 120 seconds. The benefits with SLaBS are even greater when
considering short transfers due to SLaBS avoiding the ramp-up of
TCP connections over the high-latency WAN link. After 120 seconds,
however, the direct transfer connections have leveled off and the
average rate is limited purely by TCP dynamics. SLaBS avoids this
through buffering and bursting, removing protocol overhead at the
ingress gateway via slab formation, and by optimally transferring
slabs with UDP at the WAN bottleneck rate. The slab SPDU size
was set to 32MB in this experiment.

Our second experiment looks at SLaBS performance over various
WAN latencies. Figure 3b compares 120 second GridFTP transfers
with and without SLaBS for WAN latencies of 25, 75, 125, and 175ms
RTT. The setup is identical to the 120 second tests above, but here
we chart the “instantaneous rate” reported by the GridFTP client on a
2 second interval for a single transfer. Due to the UDP data channel,
SLaBS is able to maintain consistent slab bursting performance over
the WAN link while keeping the edge rate constant even as the RTT
increases substantially, nearly fully utilizing the bottleneck link in
each case. In contrast, TCP suffers from congestive loss as competing
streams try to maximize their utilization of the 5G link. Here we see
the direct transfer case experiencing increasing periods of reduced
throughput and significantly longer recovery times as the latency
increases. We also noticed apparent TCP timeouts for the highest
latency direct cases. We believe this is due to the known limitations
of the TCP SACK Linux implementation where the combination of
large buffers (>20MB) and high BDP paths cause TCP timeouts
when a SACKed packet cannot be located within the sender’s buffer
in sufficient time.

Finally, we investigated slab bursting performance at 10Gb/s and
analyzed bursting intervals for various offered loads at the ingress
GW. Figure 3c shows the ability of SLaBS to consistently send
128MB slab SPDUs at 10Gb/s speeds while maintaining the max-
imum performance to the edge as we increase the sending rate in
500Mb/s increments up to 5Gb/s. This figure also charts the slab
formation time and receive interval associated with each increase
in the sending rate. At 10Gb/s, a 128MB slab takes approximately
109ms to transmit over the WAN, and the slab receiving interval is
simply the sum of the transfer time and the time it takes to buffer and
form a slab SPDU at the ingress SLaBS gateway. For relatively small
offered load, the SLaBS model allows for a considerable time delay
between slab transmission. As the formation time exceeds the transfer
time, slabs are sent as soon as they are formed and must be pipelined
over the WAN link to handle further increases in offered load. As we
begin to support large-scale data movement with slab SPDU lenths

of 1GB and beyond, we expect to take advantage of these longer slab
burst intervals. A core network with multiple SLaBS gateways may
maximize utilization by optimally scheduling slab transfers within
these coarse-grained time slots.

VI. RELATED WORK

While the SLaBS model described in this paper breaks new ground,
the basic principles behind buffering and bursting are certainly not
new concepts and have been proposed for a variety of network
technologies. In the early 1980’s, Amstutz [4] takes advantage of the
bursty nature of voice “talk spurts” and data messages in order to ded-
icate transmission channels only when needed, thereby improving ef-
ficiency in telecommunication switches. Protocol optimizations such
as Nagle’s algorithm [11] are guided by similar ideas at the transport
layer. The Delay Tolerant Networking Research Group (DTNRG) [2],
with its associated Bundle Protocol [12], attempts to solve the
problem of message delivery and routing over challenging network
environments, including very large delay transmission and potentially
frequently disconnected network paths. Recently, a “session layer”
for DTN [13] has been proposed that will allow receiver-driven
applications to manage relationships between individual “bundles”
of data. SLaBS shares common themes with the bundling approach
through slabbing, but we do so at a much coarser granularity while
targeting high-performance network environments.

Mills et al. set the stage for optical burst switching (OBS) with
an architecture called Highball [14] and associated scheduling algo-
rithms [15]. Their early work outlines architectural considerations for
a wide area network that reserves access ahead of time (or “just-in-
time”) for bursts of data staged at the edge of the network. This
proposed architecture did not include buffering within the network
as is the case with SLaBS, but the possibility of staging data bursts
in node controllers was considered. The proposed reservation-time-
division multiple access protocol (R-TDMA) for use in configuring
crossbar switches ahead of the data burst parallels our proposed slab
scheduling approaches between session layer gateways.

More recently, OBS advances [16] manage bursty Internet traffic
and guide the design of the next generation Optical Internet with IP
over WDM. Control and management techniques for OBS have been
proposed in recent years [17], [18]; however, these approaches are
geared towards specific optical switching hardware whereas SLaBS
applies similar concepts via a general session-layer protocol for use
over existing heterogeneous networks.

The pervading opinion regarding a solution to network perfor-
mance issues is that new or improved end-to-end transport protocols
are needed. As the dominant Transport protocol in the Internet, a
great deal of effort has gone into modifying TCP’s congestion control
algorithm. FAST TCP [19] has demonstrated good performance in
long distance, high performance networks, but is not available since
its commercialization. There are additional approaches (HighSpeed
TCP [20], Hamilton TCP [21], Vegas TCP [22], and others too
numerous to cite here) which postulate that modifications to TCP’s
congestion control model will yield positive results. While many of
these approaches can dramatically improve performance over high
bandwidth-delay product (BDP) paths, they simply do not offer a
general solution for high performance data movement when operating
over “hybrid” networks with both shared and dedicated network
resources.

Other clearly related work involves dynamic network resource
allocation. Systems like Terapaths [23], LambdaStation [24], and
VINCI [25] are all approaches related to the dynamic network
environment approach, which also use the OSCARS system [26]



for dynamic network provisioning. In addition, the DRAGON [27]
system is used to provision resources within Internet2’s ION [28]
network. These groups are collaborating and as their approaches move
closer together, SLaBS will be in a position to make use of their
advances.

VII. CONCLUSION AND FUTURE WORK

We have introduced Session Layer Burst Switching (SLaBS) as a
model for optimizing network performance through effective buffer
management and framing techniques enabled by a general session-
layer protocol. By forming right-sized bursts, or “slabs”, at buffering
gateways within the network, we enable the optimal transmission of
these slabs over dedicated network links with minimal overhead. Our
preliminary performance results have shown a significant improve-
ment in network utilization compared to direct transfers through the
use of our prototype SLaBS implementation.

As future work, we will build upon our existing implementation to
increase both performance and stability through more efficient buffer
management and protocol signaling techniques. A number of larger
questions concerning optimal slab formation strategies and scheduling
approaches must be answered via simulation and further empirical
evaluation. In addition, we plan to investigate the role RDMA and
link-layer protocols can play in optimizing slab transmission over
dedicated WAN network links with no loss. The result of this work
will ensure that the SLaBS model can scale effectively as a service
in both national and global network environments.

REFERENCES

[1] E. Kissel, M. Swany, and A. Brown, “Phoebus: A system
for high throughput data movement,” Journal of Parallel and
Distributed Computing, vol. In Press, Corrected Proof, pp. –,
2010. [Online]. Available: http://www.sciencedirect.com/science/article/
B6WKJ-50X2NF0-2/2/cd398ec15b98b38b3ddbfa44f71616a1

[2] V. G. Cerf, S. C. Burleigh, A. J. Hooke, L. Torgerson, R. C. Durst,
K. L. Scott, K. Fall, and H. S. Weiss, “Rfc 4838: Delay-tolerant network
architecture,” http://www.ietf.org/rfc/rfc4838.txt, April 2007.

[3] M. Mathis, J. Semke, J. Mahdavi, and T. Ott, “The macroscopic behavior
of the TCP congestion avoidance algorithm,” Computer Communications
Review, 27(3), July 1997., 1997.

[4] S. Amstutz, “Burst Switching–An Introduction,” Communications Mag-
azine, IEEE, vol. 21, no. 8, 1983.

[5] G. Kramer and G. Pesavento, “Ethernet passive optical network (epon):
building a next-generation optical access network,” Communications
magazine, IEEE, vol. 40, no. 2, pp. 66–73, 2002.

[6] H. Song, B.-W. Kim, and B. Mukherjee, “Long-reach optical access net-
works: A survey of research challenges, demonstrations, and bandwidth
assignment mechanisms,” Communications Surveys and Tutorials, IEEE,
vol. 12, no. 1, 2010.

[7] Y. Gu and R. Grossman, “Udt: Udp-based data transfer for high-speed
wide area networks,” Computer Networks (Elsevier) Volume 51, Issue
7., 2007.

[8] “GridFTP,”
http://www.globus.org/datagrid/gridftp.html.

[9] “Net:netem,” http://www.linux-foundation.org/en/Net:Netem.
[10] “PSpacer,” http://www.gridmpi.org/pspacer/index.en.jsp.
[11] J. Nagle, “RFC 896: Congestion control in IP/TCP internetworks,” Jan.

1984, status: UNKNOWN. [Online]. Available: ftp://ftp.internic.net/rfc/
rfc896.txt,ftp://ftp.math.utah.edu/pub/rfc/rfc896.txt

[12] R. Wang, X. Wu, T. Wang, and T. Taleb, “Experimental evaluation
of delay tolerant networking (dtn) protocols for long-delay cislunar
communications,” in GLOBECOM’09: Proceedings of the 28th IEEE
conference on Global telecommunications. Piscataway, NJ, USA: IEEE
Press, 2009, pp. 3497–3501.

[13] M. Demmer and K. Fall, “The design and implementation of a session
layer for delay-tolerant networks,” Comput. Commun., vol. 32, no. 16,
pp. 1724–1730, 2009.

[14] D. L. Mills, C. G. Boncelet, J. G. Elias, P. A. Schragger, and A. W.
Jackson, “Highball: a high speed, reserved-access, wide area network,”
Tech. Rep. 90-9-1, Electronic Engineering Department, University of
Delaware, September 1990.

[15] P. Schragger, “Scheduling algorithms for burst reservations on wide area
high speed networks,” in INFOCOM, 1991, pp. 589–596.

[16] C. Y. M. Qiao, “Optical Burst switching (obs) - a new paradigm for an
optical internet,” Journal of High Speed Networks, vol. 8, pp. 69–84,
1999.

[17] J. J. P. C. Rodrigues and M. M. Freire, “Performance assessment of en-
hanced just-in-time protocol in obs networks taking into account control
packet process ing and optical switch configuration times,” in AINAW
’08: Proceedings of the 22nd International Conference on Advanced
Information Networking and Applications - Workshops. Washington,
DC, USA: IEEE Computer Society, 2008, pp. 434–439.

[18] N. M. Garcia, J. R. Santos, M. M. Freire, and P. P. Monteiro, “A new
architecture for optical burst switched networks based on a common
control channel,” in ICNICONSMCL ’06: Proceedings of the Interna-
tional Conference on Networking, International Conference on Systems
and International Conference on Mobile Communications and Learning
Technologies. Washington, DC, USA: IEEE Computer Society, 2006,
p. 110.

[19] D. Wei, C. Jin, and S. Low, “Fast TCP: motivation, architecture,
algorithms, performance,” in Proceedings of IEEE Infocom, 2004.

[20] S. Floyd, “HighSpeed TCP for large congestion windows,” Internet En-
gineering Task Force, INTERNET-DRAFT, draft-ietf-tsvwg-highspeed-
01.txt, 2003.

[21] D. Leith and R. Shorten, “H-TCP: TCP congestion control for high
bandwidth-delay product paths,” Internet Engineering Task Force,
INTERNET-DRAFT, draft-leith-tcp-htcp-00.txt, 2005.

[22] L. S. Brakmo, S. W. O’Malley, and L. L. Peterson, “TCP vegas: New
techniques for congestion detection and avoidance,” in SIGCOMM, 1994,
pp. 24–35.

[23] B. Gibbard, D. Katramatos, and D. Yu, “Terapaths: A qos-enabled
collaborative data sharing infrastructure for peta-scale computing re-
search,” in Proceedings of the 3rd Intenational Conference on Broadband
Communications (IEEE), 2006.

[24] A. Bobyshev, M. Crawford, P. DeMar, V. Grigaliunas, M. Grigoriev,
A. Moibenko, D. Petravick, and R. Rechenmacher, “Lambda station:
On-demand flow based routing for data intensive grid applications
over multitopology networks,” in Proceedings of the 3rd Intenational
Conference on Broadband Communications (IEEE), 2006.

[25] “VINCI: Virtual Intelligent Networks for Computing Infrastructures,”
http://monalisa.caltech.edu/.

[26] “ESnet On-demand Secure Circuits and Advance Reservation System
(OSCARS),” http://www.es.net/oscars/.

[27] T. Lehman, X. Yang, C. P. Guok, N. S. V. Rao, A. Lake, J. Vollbrecht,
and N. Ghani, “Control plane architecture and design considerations
for multi-service, multi-layer, multi-domain hybrid networks,” in High
Speed Networking Workshop, INFOCOM 2007, May 2007.

[28] “Internet2 ION,” http://www.internet2.edu/ion/.

http://www.sciencedirect.com/science/article/B6WKJ-50X2NF0-2/2/cd398ec15b98b38b3ddbfa44f71616a1
http://www.sciencedirect.com/science/article/B6WKJ-50X2NF0-2/2/cd398ec15b98b38b3ddbfa44f71616a1
http://www.ietf.org/rfc/rfc4838.txt
http://www.globus.org/datagrid/gridftp.html
http://www.linux-foundation.org/en/Net:Netem
http://www.gridmpi.org/pspacer/index.en.jsp
ftp://ftp.internic.net/rfc/rfc896.txt, ftp://ftp.math.utah.edu/pub/rfc/rfc896.txt
ftp://ftp.internic.net/rfc/rfc896.txt, ftp://ftp.math.utah.edu/pub/rfc/rfc896.txt
http://monalisa.caltech.edu/
http://www.es.net/oscars/
http://www.internet2.edu/ion/

	Introduction
	Overview
	SLaBS: A Buffer and Burst Model
	Implementation
	Experimental Evaluation
	Preliminary Results

	Related Work
	Conclusion and Future Work
	References

