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ABSTRACT 
Data reneging occurs when a data receiver first SACKs data, and 
later discards that data from its receiver buffer prior to delivering 
it to the receiving application or socket buffer. Today’s reliable 
transport protocols such as TCP and SCTP are designed to 
tolerate data reneging. We argue that this design assumption is 
wrong, in part based on a hypothesis that data reneging rarely if 
ever occurs in practice. To support our hypothesis, we present a 
model for detecting instances of data reneging by analyzing traces 
of TCP traffic. Using this model, we will investigate the frequency 
of data reneging in Internet traces provided by CAIDA.    

Categories and Subject Descriptors 
C.2.5 [Local and Wide-Area Networks]: Internet (e.g., TCP), 
C.2.6 [Internetworking]: Standards (TCP, SACK) 

General Terms 
Measurement, Verification. 

Keywords 
Data reneging, SACK, SCTP, TCP. 

1. INTRODUCTION 
Transmission Control Protocol (TCP) [14] uses sequence 
numbers and cumulative acknowledgments (ACKs) to achieve 
reliable data transfer. A TCP data receiver uses sequence numbers 
to sort arrived data segments. Data arriving in expected order, i.e., 
ordered data, is cumulatively ACKed (herein ACKed) to the data 
sender. The data sender assumes the data receiver accepts 
responsibility of delivering ACKed data to the receiving 
application, and deletes all ACKed data from its send buffer, 
potentially even before that data is delivered to a receiving 
application. 

The receive buffer consists of two types of data: ordered data 
which has been ACKed but not yet delivered to the application, 
and out-of-order data that resulted from loss or reordering in the 
network. A correct TCP data receiver implementation must not 
delete ACKed data without first delivering it to the receiving 
application since the data sender may remove ACKed data from 

its send buffer. 

The Selective Acknowledgment Option (SACK), specified in 
RFC 2018 [9], is an extension to TCP’s cumulative ACK 
mechanism, and is used by a data receiver to acknowledge (herein 
SACK) arrived out-of-order data to the data sender. The intent is 
that SACKed data do not need to be retransmitted during loss 
recovery. Prior research [1, 2, 5] showed that SACK improves 
TCP throughput when multiple losses occur in the same window. 

Deployment of the SACK option in TCP connections is an 
increasing trend. In 2001, 41% of the web servers tested were 
SACK-enabled [12]. In 2005, SACK-enabled web servers 
increased to 68% [10]. All recent versions of FreeBSD, Linux, 
Mac OS, OpenBSD, OpenSolaris, Solaris, and Windows create 
SACK-enabled TCP connections by default. 

Data receiver reneging (herein data reneging) occurs when a data 
receiver SACKs data, and later discards that data from its receiver 
buffer prior to delivering it to the receiving application or socket 
buffer. TCP is designed to tolerate data reneging. Specifically 
RFC 2018 states: “The SACK option is advisory, in that, while it 
notifies the data sender that the data receiver has received the 
indicated segments, the data receiver is permitted to later discard 
data which have been reported in a SACK option”. Data reneging 
might happen, for example, when an operating system needs to 
recapture previously allocated memory for another process, say to 
avoid deadlock. Data reneging might happen in operating systems 
such as FreeBSD, Linux and Mac OS. For example, in FreeBSD 
and Mac OS, the sysctl option net.inet.tcp.do_tcpdrain turns 
on/off data reneging support [7].   

Because TCP is designed to tolerate data reneging, a TCP data 
sender must retain copies of all transmitted data in its send buffer, 
even SACKed data, until they are ACKed. Then, if data reneging 
does occur, eventually the sender will timeout on the reneged 
data, delete all SACK information, and retransmit the reneged 
data. The data transfer thus remains reliable. Unfortunately if data 
reneging does not happen, SACKed data is wastefully stored in 
the send buffer until ACKed. 

We argue that SACK’s design assumption to tolerate data 
reneging is wrong.  This opinion is based on: (1) a hypothesis that 
data reneging rarely if ever occurs in practice, and (2) research 
demonstrating potential improved performance if SACKed data 
were not renegable. 

In Section 2, we further present the motivation to detect data 
reneging instances. Then Section 3 presents the model to detect 
data reneging instances based on Internet trace files provided by 
Cooperative Association for Internet Data Analysis (CAIDA) 
[15]. Section 4 presents results of verifying our model. Section 5 
identifies several past methodologies to infer TCP behavior, and 
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Section 6 presents our on-going research to apply the model to 
TCP traces.  

2. DOES DATA RENEGING HAPPEN? 
Data reneging is a transport layer behavior of which we know 
little about its frequency of occurrence in practice. This section 
provides motivation to detect data reneging instances in reliable 
transport protocols such as TCP and SCTP. 

To motivate the study of data reneging, we first need to 
understand the potential gains of a transport protocol that does not 
tolerate data reneging. For that, we present a brief background on 
Non-Renegable Selective Acks (NR-SACKs) [4]. 

2.1 NR-SACKs 
NR-SACK is a new ack mechanism proposed for the Stream 
Control Transmission Protocol (SCTP) [16]. With the NR-SACK 
extension, an SCTP data receiver takes responsibility for 
selectively acked data (NR-SACKed). In that case, an SCTP data 
sender no longer needs to retain copies of NR-SACKed data in its 
send buffer until ACKed.  Just as with ACKed data, NR-SACKed 
data can be removed from the send buffer immediately on the 
receipt of the NR-SACK. 

With NR-SACKs, the main memory allocated for the send buffer 
is better utilized. Natarajan et al. [11] present send buffer 
utilization results for unordered data transfers over SCTP under 
mild (~1-2%), medium (~3-4%) and heavy (~8-9%) loss rates for 
NR-SACKs vs. SACKs. For the bandwidth-delay parameters 
studied, the memory wasted by assuming SACKed data could be 
reneged was on average ~10%, ~20% and ~30% for the given loss 
rates, respectively. 

NR-SACKs also can improve end-to-end application throughput. 
To send new data, in TCP and SCTP, a data sender is constrained 
by three factors: the congestion window (congestion control), the 
advertised receive window (flow control) and the send buffer. 
When the send buffer is full, no new data can be transmitted even 
when congestion and flow control mechanisms allow. When NR-
SACKed data is removed from the send buffer, new application 
data can be read and potentially transmitted. 

Yilmaz et al. [17] investigate throughput improvements for NR-
SACK vs. SACK. The authors show that the throughput achieved 
with NR-SACKs is always ≥ the throughput observed with 
SACKs. For example, using NR-SACKs, the throughput for an 
unordered data transfer over SCTP is improved by ~14% for a 
data sender with 32KB send buffer under low (~0-1%) loss rate. 

2.2 Motivation to Study Data Reneging 
Consider designing reliable transport protocols to NOT tolerate 
data reneging. In such a case, the send buffer utilization would be 
always optimal, and the application throughput could be improved 
for data transfers with constrained send buffers. Current transport 
protocols employing SACKs (TCP, SCTP) suffer because of the 
assumption that data reneging may happen. 

If we can document that data reneging never happens or happens 
rarely, we can argue that reliable transport protocols should be 
modified to assume all selectively acked data is non-renegable. As 
a simple example, assume that data reneging happens rarely, say 
once in 100,000 TCP flows. 

Case A (current practice): TCP tolerates data reneging to achieve 
reliable data transfer in a single data reneging connection. 99,999 
non-reneging connections potentially waste memory allocated for 
send buffer, and achieve lower application throughput. One 
reneging connection operates without interruption. 

Changing transport protocols that currently support data reneging 
into non-reneging transport protocols requires minor 
modification. First, the semantics for SACK are changed from 
advisory to permanent. Second, if a data receiver does have to 
renege, we propose the data receiver must RESET the connection. 

Case B (proposed change): TCP does not tolerate data reneging. 
99,999 non-reneging connections potentially have improved 
performance, and 1 reneging connection is aborted.  (Given the 
dire situations requiring a receiver to renege, aborting the 
reneging connection is unlikely to make matters worse.) 

We hypothesize that few (if any) connections will be penalized, 
and the large majority of non-reneging connections will 
potentially benefit from better send buffer utilization and 
increased throughput. The problem is that data reneging has never 
been studied by the research community. No one knows what 
percentage of connections renege. The key issue – does data 
reneging occur or not? 

3. A MODEL TO DETECT RENEGING 
To begin to answer this key issue, this section presents a model to 
passively detect data reneging instances occurring in Internet 
traces. First, we present how a TCP or SCTP data sender infers 
data reneging in sections 3.1 and 3.2, respectively. In section 3.3, 
we introduce our model to detect data reneging instances. 

3.1 Detecting Reneging at TCP Data Sender 
In the current TCP and TCP SACK specifications, a TCP data 
sender has no design to infer data reneging. To tolerate data 
reneging, a TCP data sender keeps copies of SACKed data in its 
send buffer until that data is ACKed. To achieve reliable data 
transfer, the following retransmission policy is specified in [9] for 
a data sender in the case of reneging. 

For each segment in the send buffer that is SACKed, an associated 
“SACKed” flag is set. The segments with “SACKed” bit set are 
not retransmitted until a timeout happens. At the timeout, the TCP 
data sender clears all “SACKed” information due to possible data 
reneging, and retransmits the segment at the left edge of the send 
buffer. 

3.2 Detecting Reneging at SCTP Data Sender 
SCTP supports data reneging detection at the data sender. Unlike 
TCP’s constrained number on the reported SACK options (4 at 
maximum), an SCTP data receiver can generate SACK chunks 
with a large number of SACK options. For example, for a path 
with MTU=512 bytes, a SACK chunk can report 116 SACK 
options (20 bytes for IP header, 12 bytes for SCTP common 
header, 16 bytes for SACK chunk header + 116 * 4 byte SACK 
options). 

Thus, an SCTP data sender receives a more accurate view of the 
data receiver’s buffer, and can accurately infer data reneging by 
inspecting SACK options. If a new SACK arrives and previously 



SACKed data is not present, the SCTP data sender infers data 
reneging, and marks the reneged data for retransmission. 

Let us look at an example data reneging scenario in Figure 1 and 
see how an SCTP data sender infers data reneging in detail.  
Without loss of generality, the example assumes 1 byte of data is 
transmitted in each data packet. A data sender sends packets 1 
through 6 to a data receiver. Assume packet 2 is lost. The data 
receiver receives packets 3 through 6, and sends ACKs and 
SACKs to notify the data sender about the out-of-order data. 
When ACK 1 SACK 3-6 arrives at the data sender, the state of the 
receive buffer is known to be: ordered data 1 is delivered or 
deliverable to the receiving application, and out-of-order data 3-6 
is in the receive buffer. 

Before packet 2 is retransmitted via a fast retransmission, assume 
the data receiver’s operating system runs short of main memory, 
and reneges all of the out-of-order data in the receive buffer. 
When packet 2’s retransmission arrives at the data receiver, ACK 
2 is sent back to the data sender with no SACKs. 

When the data sender receives ACK 2, data reneging is detected. 
Previously SACKed out-of-order data 3-6 is not still being 
SACKed. Data 3-6 is marked for retransmission. 

ACK 2 SACK 7-7 is sent when data 7 arrives out-of-order. This 
SACK also implies data reneging (for data 3-6) if the previous 
ACK 2 was lost. 

Figure 1. Detecting data reneging at SCTP data sender 

3.3 Detecting Reneging at a Router 
To detect an SCTP data reneging instance, a data sender infers the 
state of the data receiver’s receive buffer through ACKs and 
SACKs.  Even though TCP has no mechanism to detect data 
reneging instances, data reneging can be detected by analyzing 
TCP ack traffic, and inferring the state of the receiver’s buffer. 

For a TCP data receiver, the state of the receive buffer can be 
learned with the ACKs and SACKs, and updated through the new 
acks observed at an intermediate router. The state consists of a 
cumulative ACK value (stateACK) and a list of out-of-order data 
blocks (stateSACK blocks) known to be in the receive buffer. 

The example in Figure 1 assumed all ack traffic arrives to the data 
sender and data reneging is detected.  Consider the example 
scenario when the ack traffic is monitored by an intermediate 
router. In the example, the data reneging instance is detected 
when all of the acks arrive at the data sender. In practice, acks 

may traverse different paths, arrive at the intermediate router out-
of-order, or get lost in the network before reaching the router. 

Figure 2 shows the same data transfer where only three acks are 
monitored at the intermediate router. On seeing ACK 1 SACK 3-
4, the router determines the state of receive buffer is: ordered data 
1 is delivered or deliverable to the receiving application 
(stateACK 1) and out-of-order data 3-4 is in the receive buffer 
(stateSACK 3-4). ACK 1 SACK 3-6 updates this state by adding 
out-of-order data 5-6 as SACKed (stateSACK 3-6). When ACK 2 
SACK 7-7 is received and compared to the state of receive buffer 
(stateACK 1, stateSACK 3-6), an inconsistency is observed and 
data reneging is detected since data 3-6 are not SACKed. 

Figure 2. Detecting data reneging by an intermediate router 

Even though the number of acks observed at the intermediate 
router was limited, the state of the receive buffer is as for Figure 
1. Because a SACK option reports all consecutive out-of-order 
segments as a block, the intermediate router can infer the 
complete state of the receive buffer most of the time. 

Constructing the state of the receive buffer as accurately as 
possible is based on the actual number of SACK blocks at the data 
receiver. If the number of SACK blocks at a data receiver is more 
than four, then the data receiver is unable to report full SACK 
information. In this case when consecutive acks get lost, the 
intermediate router will have less accurate state information.   

Table 1 presents the number of SACK options in TCP segments 
based on a few randomly selected trace files from the Internet 
backbone captured in June 2008. Recall that at maximum 4 SACK 
options can be included in a TCP segment. For segments with 1, 
2, or 3 SACK option(s), the TCP header length is checked to 
determine if another SACK option could have been appended to 
the TCP header. TCP segments with 4 SACK options already 
have a full TCP header. Less than 0.5% of the TCP segments that 
include SACK options do not have enough space for another 
SACK option. Assuming all TCP traces follow a similar pattern, 
the state of the receive buffer can be constructed accurately most 
of the time. 

Even though the state of receive buffer may be inaccurate, having 
a partial state of the out-of-order data in the receive buffer would 
be still enough to detect data reneging instances. The reasoning is 
that we expect a reneging data receiver will purge all of the out-
of-order data as occurs in FreeBSD [7]. Since the intermediate 
router has state information about out-of-order data, data reneging 



instance will be detected when acks with no SACK option are 
observed. 

Table 1. Number of SACK options in TCP segments 

TCP Segments with 
n SACK options 

Enough space 
for another 

SACK option 

Not enough space 
for another 

SACK option 

n=1 ~88% 0% 

n=2 ~11% 0% 

n=3 0.7% 0.20% 

n=4 n/a 0.15% 

Total number of TCP segments 780,798 (100%) 

 
Our software to detect data reneging instances (Reneg-detect) 
constructs the state of the receive buffer for TCP flows that 
contain SACKs. An inferred state of the receive buffer is 
compared with new acks to check for consistency. When the 
comparison is consistent, the receive buffer state is updated. 
Otherwise data reneging instance is detected and reported. 

We now describe our model for constructing the state of receive 
buffer at an intermediate router. The state consists of a cumulative 
ACK value and a list of ordered out-of-order data blocks (SACK 
blocks) known to be in the receive buffer. 

The cumulative ACK value holds the highest ACK value observed 
for the TCP flow, and is updated when a higher ACK value is 
observed. When the cumulative ACK value is updated, any SACK 
blocks below the cumulative ACK value are deleted from the 
state. 

Figure 3 presents our model for constructing and updating the 
SACK block state of the receive buffer. The state is initialized 
with the first TCP ack observed in a flow. If the ack has no SACK 
option(s), only the cumulative ACK value is recorded. If the ack 
includes SACK option(s), each one is added as a SACK block to 
the state. 

When the next TCP ack is observed, each reported SACK option 
(corresponding to a New SACK Block (N) in Figure 3) is 
compared with the SACK blocks in the receive buffer state. Each 
SACK block in the receive buffer state is represented by Current 
SACK Block (C) in Figure 3. 

The comparison of a new SACK block (N) and a current SACK 
block (C) is done both on the left (L) and right (R) edges. If each 
SACK block is thought of as a set, a comparison of two sets must 
result in exactly one of four cases: 

1. N is a superset of C  ( ) 

2. N is a proper subset of C ( ) 

3. N intersects with C, and N and C each have at least 1 byte of 
data not in C and N, respectively 
(( ) 

4. N does not intersect with C ( ) 

Note that the above cases are mutually exclusive. Each case is 
described in turn. For the given examples, assume an initial 
receive buffer state as follows: the cumulative ACK value is 8 

(stateACK 8), and there is one SACK Block (stateSACK 12-15) 
with left and right edges 12 and 15, respectively. 

Case 1: When a new SACK block (e.g., SACK 12-17) is a 
superset of a current SACK block (e.g., stateSACK 12-15), it 
means more out-of-order data had been received at the data 
receiver. The current SACK block is updated to reflect the new 
SACK block. The update may be in terms of a left edge extension, 
a right edge extension or both. After the update, the new SACK 
block is compared with the next SACK blocks in the state. The 
reasoning is that a new SACK block may be the superset of a 
number of SACK blocks in the receive buffer state due to possible 
ack reordering, and may fill a gap between two SACK blocks. 

Case 2: When a new SACK block (e.g., SACK 12-13) is a proper 
subset of a current SACK block (e.g., stateSACK 12-15), the 
comparison implies data reneging (out-of-order data 14-15 had 
been deleted from the receive buffer). An instance of data 
reneging is logged for future deeper analysis. 

Case 3: Data reneging is detected similarly when a new SACK 
block (e.g., SACK 14-20) intersects with a current SACK block 
(stateSACK 12-15). Such a case would result when a data receiver 
purges some, but not all, of the out-of-order data, and later 
receives more out-of-order data. The new ack informs the arrival 
of new out-of-order data, 16-20, as well as the removal of 
previously SACKed data, 12-13. The state is not updated (to catch 
more inconsistencies) until the cumulative ACK is advanced 
beyond the SACK blocks that trigger data reneging instances. 

Case 4: If a new SACK block (e.g., SACK 22-25) and a current 
SACK block (e.g., stateSACK 12-15) do not intersect, the new 
SACK block is compared with the next SACK block in the state. 
If the new SACK block reported is disjoint with all of the SACK 
blocks in the state, the new SACK block is added to the receive 
buffer state. The updated receive buffer state becomes stateACK 
8, stateSACK1 12-15, stateSACK2 22-25. 

The model detects data reneging instances only when some SACK 
options are included in the acks. If a data receiver purges all out-
of-order data in the receive buffer, no SACK options are reported. 
In such a case, the receive buffer state would have a number of 
SACK blocks, and the new ack reports no SACK blocks (even 
though TCP options field has enough space to report at least one 
SACK option). Reneg-detect also infers such data reneging 
instances. 

Data reneging may be inferred spuriously if acks are reordered 
before arriving at the intermediate router. To cope with 
reordering, a check is performed on the protocol fields: IP ID and 
TCP ACK. When one or both of the fields of an ack is smaller 
than the previous ack’s values, reordering is detected. Reordered 
acks are not used to update the receive buffer state; they are 
discarded. 

4. MODEL VERIFICATION 
Reneg-detect was verified with synthetic TCP flows that mimic 
data reneging behavior. Data reneging flows were created using 
text2pcap tool, and all of the data reneging flows tested were 
identified correctly as reneging. 

Reneg-detect also was verified by analyzing 100s of TCP flows 
from Internet traces provided by CAIDA. Initially it seemed that 



data reneging was happening frequently. On closer inspection 
however, it turned out that the generation of SACKs in many TCP 
implementations was incorrect (!) according to RFC 2018. 
Sometimes SACK information that should have been sent was 
not. Sometimes the wrong SACK information was sent. These 
misbehaviors wrongly gave the impression that data reneging was 
occurring. 

Our discovery led us to a side investigation to verify SACK 
generation behavior of TCP data receivers for a wide range of 
operating systems [3].  Now, we are developing a methodology 
for verifying SACK behavior, and we will apply the methodology 
to report misbehaving TCP stacks. 

Based on the results of the model verification effort, we updated 
Reneg-detect to identify these misbehaviors, and not report them 
as instances of data reneging. 

5. RELATED WORK 
Previous studies employed passive measurements to infer specific 
protocol behavior by analyzing large number of TCP flows. In 
those passive measurement studies, collected trace files were 
analyzed to infer the specific TCP behavior. 

Paxson [13] presents tcpanaly, a tool which automatically 
analyses the correctness of TCP implementations by inspecting 
traces collected for bulk data transfers. 

Fraleigh [6] describes the architecture and capabilities of the 
IPMON system which is used for IP monitoring at Sprint IP 
backbone network. IPMON consists of passive monitoring 
entities, a data repository to store collected trace files and an 
offline analysis platform to analyze the collected data. The authors 
analyze individual flows and traffic generated by different 
protocols and applications and present statistics such as traffic 
load (weekly and daily), traffic load by applications (web, mail, 
file transfer, p2p, streaming), traffic load in flows. Also TCP 
related statistics such as packet size distribution, RTT, out-of-
sequence rate, and delay distributions are presented. 

In Jaiswal [8], the authors introduce a passive measurement 
technique to infer and keep track of congestion window (cwnd) 
and round trip time (RTT) of a TCP data sender. To infer data 
senders’ cwnd, the authors construct a replica of the data sender’s 
TCP state using a finite state machine (FSM). FSM is updated 
through ACKs and retransmissions seen at the data collection 
point. 

6. WORK IN PROGRESS 
To detect data reneging instances, we need TCP flows in which 
some SACK options are observed during the data transfer. For 
that, we are filtering CAIDA traces to obtain only TCP flows with 
SACK options to analyze them with Reneg-detect. 

The summary of Internet trace files provided by CAIDA by 
(year/data collection machine/number of traces available) is as 
follows: 

• 2008/equinix-chicago/10 

• 2008/equinix-sanjose/6 

• 2009/equinix-chicago/12 

• 2009/equinix-sanjose/12 

• 2010/equinix-chicago/3 

• 2010/equinix-sanjose/3 

The total duration of each trace is 1 hour and consists of 60 one 
minute traces. In our lab we do not have enough computation 
power to analyze all of the traces provided. Instead we are 
planning to analyze TCP flows from each data set with total 
duration of 2-3 minutes. The minutes to be used will be chosen 
randomly. 

We are also looking for TCP trace files from other domains such 
as wireless networks where the loss rate is higher. Our goal is to 
analyze millions of TCP flows using Reneg-detect, and document 
the frequency of data reneging instances.  Based on these 
empirical observations, we will provide the first documentation of 
transport layer data reneging in the literature. 
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