A Model for Detecting Transport Layer Data Reneging

Nasif Ekiz
Computer and Information Sciences Department
University of Delaware
Newark, Delaware 19716

nekiz@udel.edu

ABSTRACT

Data reneging occurs when a data receiver firstiSA@ata, and
later discards that data from its receiver bufféorpto delivering

it to the receiving application or socket buffelodhy’s reliable
transport protocols such as TCP and SCTP are d=bigo

tolerate data reneging. We argue that this desggumption is
wrong, in part based on a hypothesis that datagiegearely if

ever occurs in practice. To support our hypotheses present a
model for detecting instances of data renegingralyaing traces
of TCP traffic. Using this model, we will investigethe frequency
of data reneging in Internet traces provided by @Al

Categoriesand Subject Descriptors
C.2.5 Local and Wide-Area Networks]: Internet (e.g., TCP),
C.2.6[Internetworking]: Standards (TCP, SACK)

General Terms
Measurement, Verification.

Keywords
Data reneging, SACK, SCTP, TCP.

1. INTRODUCTION

Transmission Control Protocol (TCP) [14] uses segae
numbers and cumulative acknowledgments (ACKs) tbiexe
reliable data transfer. A TCP data receiver usqaesgece numbers
to sort arrived data segments. Data arriving ineeted order, i.e.,
ordered datais cumulatively ACKed (herein ACKed) to the data
sender. The data sender assumes the data recaigepta
responsibility of delivering ACKed data to the rivoey
application, and deletes all ACKed data from itedsduffer,
potentially even before that data is delivered taeaeiving
application.

The receive buffer consists of two types of dataleced data
which has been ACKed but not yet delivered to tppliaation,
and out-of-order data that resulted from loss ordering in the
network. A correct TCP data receiver implementationst not
delete ACKed data without first delivering it toettreceiving
application since the data sender may remove ACkad from

Permission to make digital or hard copies of alpart of this work for
personal or classroom use is granted without feeighed that copies are
not made or distributed for profit or commercialvadtage and that
copies bear this notice and the full citation oa finst page. To copy
otherwise, or republish, to post on servers oredistribute to lists,
requires prior specific permission and/or a fee.
Conference’lpMonth 1-2, 2010, City, State, Country.

Copyright 2010 ACM 1-58113-000-0/00/0010...$10.00.

Paul D. Amer
Computer and Information Sciences Department
University of Delaware
Newark, Delaware 19716

amer@udel.edu

its send buffer.

The Selective Acknowledgment Option (SACK), spedfiin
RFC 2018 [9], is an extension to TCP’s cumulativ€KA
mechanism, and is used by a data receiver to adkdges (herein
SACK) arrived out-of-order data to the data sendlbe intent is
that SACKed data do not need to be retransmittaithgluoss
recovery. Prior research [1, 2, 5] showed that SA@Kroves
TCP throughput when multiple losses occur in thmesaindow.

Deployment of the SACK option in TCP connections ais
increasing trend. In 2001, 41% of the web servestetl were
SACK-enabled [12]. In 2005, SACK-enabled web sever
increased to 68% [10]. All recent versions of Fr8EB Linux,
Mac OS, OpenBSD, OpenSolaris, Solaris, and Windoreste
SACK-enabled TCP connections by default.

Data receiver renegin¢hereindata reneginyoccurs when a data
receiver SACKs data, and later discards that data fts receiver
buffer prior to delivering it to the receiving apgation or socket
buffer. TCP is designed to tolerate data renegBgecifically
RFC 2018 statesThe SACK option is advisory, in that, while it
notifies the data sender that the data receiver feived the
indicated segments, the data receiver is permittedter discard
data which have been reported in a SACK opti@ata reneging
might happen, for example, when an operating systesds to
recapture previously allocated memory for anothiecgss, say to
avoid deadlock. Data reneging might happen in djpgyaystems
such as FreeBSD, Linux and Mac OS. For exampl&réeBSD
and Mac OS, thesysctl option net.inet.tcp.do_tcpdrairturns
on/off data reneging support [7].

Because TCP is designed to tolerate data renegifiCP data
sender must retain copies of all transmitted daigsisend buffer,
even SACKed data, until they are ACKed. Then, thd&neging
does occur, eventually the sender will timeout ba teneged
data, delete all SACK information, and retransrhi¢ reneged
data. The data transfer thus remains reliable. ttinfately if data
reneging does not happen, SACKed data is wasteftiised in
the send buffer until ACKed.

We argue that SACK’s design assumption to tolerdtga
reneging is wrong. This opinion is based on: (lhypothesis that
data reneging rarely if ever occurs in practice] &) research
demonstrating potential improved performance if &6 data
were not renegable.

In Section 2, we further present the motivationditect data
reneging instances. Then Section 3 presents thelntoddetect
data reneging instances based on Internet traee gilovided by
Cooperative Association for Internet Data Analy$SAIDA)

[15]. Section 4 presents results of verifying owdal. Section 5
identifies several past methodologies to infer Tis&Ravior, and

Section 6 presents our on-going research to apyymodel to
TCP traces.

2. DOESDATA RENEGING HAPPEN?

Data reneging is a transport layer behavior of tvhiee know
little about its frequency of occurrence in pragtidhis section
provides motivation to detect data reneging ingana reliable
transport protocols such as TCP and SCTP.

To motivate the study of data reneging, we firstecheto
understand the potential gains of a transport podtihat does not
tolerate data reneging. For that, we present & baiekground on
Non-Renegable Selective Acks (NR-SACKSs) [4].

21 NR-SACKs

NR-SACK is a new ack mechanism proposed for theatr
Control Transmission Protocol (SCTP) [16]. With tHR-SACK

extension, an SCTP data receiver takes respomgibitr

selectively acked data (NR-SACKed). In that caseSE&TP data
sender no longer needs to retain copies of NR-SAQkKata in its
send buffer until ACKed. Just as with ACKed diN&-SACKed

data can be removed from the send buffer immegiatal the
receipt of the NR-SACK.

With NR-SACKs, the main memory allocated for thadédéuffer

is better utilized. Natarajan et al. [11] presernd buffer

utilization results for unordered data transferero8 CTP under
mild (~1-2%), medium (~3-4%) and heavy (~8-9%) |lostes for

NR-SACKs vs. SACKs. For the bandwidth-delay paramet
studied, the memory wasted by assuming SACKed ctai&d be

reneged was on average ~10%, ~20% and ~30% faithe loss

rates, respectively.

NR-SACKs also can improve end-to-end applicatiomulghput.

To send new data, in TCP and SCTP, a data sendensdrained
by three factors: the congestion window (congestiontrol), the
advertised receive window (flow control) and thendsebuffer.

When the send buffer is full, no new data can besmitted even
when congestion and flow control mechanisms alldiken NR-

SACKed data is removed from the send buffer, nepliegtion

data can be read and potentially transmitted.

Yilmaz et al. [17] investigate throughput improvertefor NR-
SACK vs. SACK. The authors show that the throughgmitieved
with NR-SACKs is always> the throughput observed with
SACKs. For example, using NR-SACKs, the throughfoutan
unordered data transfer over SCTP is improved b§%-Tor a
data sender with 32KB send buffer under low (~0-184$ rate.

2.2 Motivation to Study Data Reneging

Consider designing reliable transport protocolSNOT tolerate
data reneging. In such a case, the send buffézatidn would be
always optimal, and the application throughput ddag improved
for data transfers with constrained send buffergréht transport
protocols employing SACKs (TCP, SCTP) suffer beeaofthe
assumption that data reneging may happen.

If we can document that data reneging never happehsppens
rarely, we can argue that reliable transport pmioshould be
modified to assume all selectively acked data is-remegable. As
a simple example, assume that data reneging happesig, say
once in 100,000 TCP flows.

Case A (current practice): TCP tolerates data liegetm achieve
reliable data transfer in a single data renegingneotion. 99,999
non-reneging connectiomotentially waste memory allocated for
send buffer, and achieve lower application throwghgOne
reneging connection operates without interruption.

Changing transport protocols that currently suppata reneging
into non-reneging transport protocols requires mino
modification. First, the semantics for SACK are rfgad from
advisory to permanent Second, if a data receiver does have to
renege, we propose the data receiver must RESEJotheection.

Case B (proposed change): TCP does not toleraterdaeging.
99,999 non-reneging connections potentially havepraved
performance, and 1 reneging connection is abort@iven the
dire situations requiring a receiver to renege, ritg the
reneging connection is unlikely to make matterssggr

We hypothesize that few (if any) connections wil penalized,
and the large majority of non-reneging connectionsl
potentially benefit from better send buffer utilibm and
increased throughput. The problem is that datagiagehas never
been studied by the research community. No one &nathat
percentage of connections renege. The key issu@es data
reneging occur or not?

3. AMODEL TO DETECT RENEGING

To begin to answer this key issue, this sectioserts a model to
passively detect data reneging instances occuiinndgnternet

traces. First, we present how a TCP or SCTP datdeseanfers

data reneging in sections 3.1 and 3.2, respectilelgection 3.3,
we introduce our model to detect data renegingintcss.

3.1 Detecting Reneging at TCP Data Sender

In the current TCP and TCP SACK specifications, GPTdata
sender has no design to infer data reneging. Terdt data
reneging, a TCP data sender keeps copies of SA@E&din its
send buffer until that data is ACKed. To achieviakde data
transfer, the following retransmission policy iesffied in [9] for

a data sender in the case of reneging.

For each segment in the send buffer that is SACKer@ssociated
“SACKed" flag is set. The segments with “SACKed' bt are
not retransmitted until a timeout happens. At thebut, the TCP
data sender clears all “SACKed” information dugétssible data
reneging, and retransmits the segment at the deje ef the send
buffer.

3.2 Detecting Reneging at SCTP Data Sender
SCTP supports data reneging detection at the @aides. Unlike
TCP’s constrained number on the reported SACK opti(! at
maximum), an SCTP data receiver can generate SAGKks
with a large number of SACK options. For exampla, & path
with MTU=512 bytes, a SACK chunk can report 116 $AC
options (20 bytes for IP header, 12 bytes for S@&Bfmmon
header, 16 bytes for SACK chunk header + 116 * # ISACK
options).

Thus, an SCTP data sender receives a more acaieateof the
data receiver's buffer, and can accurately infela daneging by
inspecting SACK options. If a new SACK arrives greéviously

SACKed data is not present, the SCTP data sendersidata
reneging, and marks the reneged data for retrasgmis

Let us look at an example data reneging scenarkigare 1 and
see how an SCTP data sender infers data renegirdptal.
Without loss of generality, the example assumegté bf data is
transmitted in each data packet. A data sendersspadkets 1
through 6 to a data receiver. Assume packet 2d6 [the data
receiver receives packets 3 through 6, and sendksA&hd
SACKs to notify the data sender about the out-ofordata.
When ACK 1 SACK 3-6 arrives at the data sendersthte of the
receive buffer is known to be: ordered data 1 iBveleed or
deliverable to the receiving application, and olabw@ler data 3-6
is in the receive buffer.

Before packet 2 is retransmitted via a fast retrassion, assume
the data receiver’s operating system runs shomaifi memory,

and reneges all of the out-of-order data in thesivec buffer.

When packet 2's retransmission arrives at the dateiver, ACK

2 is sent back to the data sender with no SACKSs.

When the data sender receives ACK 2, data rendgidgtected.
Previously SACKed out-of-order data 3-6 is notlshking
SACKed. Data 3-6 is marked for retransmission.

ACK 2 SACK 7-7 is sent when data 7 arrives out-afes. This
SACK also implies data reneging (for data 3-6)hi¢ tprevious
ACK 2 was lost.

H -

Receive Buffer

Data Sender Data Receiver \:l:l:l:l:l:l
1]

B ACK 1 LT TTT]

- EEEEEE
(2]

o (I []

5] ACK 1, SACK 3-4 [Jala] T T |

EI ACK 1, SACK 3-5 [J3]a]s] | |

ACK 1, SACK 3-6 [J3]a]s]e] |

OS needs memory, shrinks 1 1

L]
2] the window and RENEGEs! i !
7

Figure 1. Detecting data reneging at SCTP data sender

3.3 Detecting Reneging at a Router

To detect an SCTP data reneging instance, a dateeisanfers the
state of the data receiver's receive buffer throdgbKs and
SACKs. Even though TCP has no mechanism to detatz
reneging instances, data reneging can be detegtexhdlyzing
TCP ack traffic, and inferring the state of theeiger’s buffer.

For a TCP data receiver, the state of the receixfeebcan be
learned with the ACKs and SACKSs, and updated thinathe new
acks observed at an intermediate router. The statsists of a
cumulative ACK value (stateACK) and a list of odtesder data
blocks (stateSACK blocks) known to be in the reediuffer.

The example in Figure 1 assumed all ack traffitvasrto the data
sender and data reneging is detected. Considerxheple
scenario when the ack traffic is monitored by aterimediate
router. In the example, the data reneging instaecdetected
when all of the acks arrive at the data sendeipractice, acks

may traverse different paths, arrive at the inteliate router out-
of-order, or get lost in the network before reagttime router.

Figure 2 shows the same data transfer where onde thcks are
monitored at the intermediate rout€m seeing ACK 1 SACK 3-
4, the router determines the state of receive bidfeordered data
1 is delivered or deliverable to the receiving amilon
(stateACK 1) and out-of-order data 3-4 is in theeree buffer
(stateSACK 3-4). ACK 1 SACK 3-6 updates this stayeadding
out-of-order data 5-6 as SACKed (stateSACK 3-6) eWACK 2
SACK 7-7 is received and compared to the stateafive buffer
(stateACK 1, stateSACK 3-6), an inconsistency isesbed and
data reneging is detected since data 3-6 are nCK8A.

,[-

e) . Router’s view of
Data Sender Router Data Receiver Receive Buffer Receive Buffer
CTTTTT]
= INEREN
z (T
= EOREEE
% /ACK1,SACK3-4 [J3]a] T T] [Is[e] T 11
[[sTals] [|
—"
_—tpoxisackss [[s]alsle] | [[al4s]6]]
OS needs memory, 1 1
E' le—" shrinks the window D' !
and RENEGESs!
P (T 1T J7] \ﬂswsm
/

Figure 2. Detecting data reneging by an intermediate router

Even though the number of acks observed at thenietdiate
router was limited, the state of the receive buiffeas for Figure
1. Because a SACK option reports all consecutiveoborder
segments as a block, the intermediate router cder ithe
complete state of the receive buffer most of theeti

Constructing the state of the receive buffer asumately as
possible is based on the actual number of SACKkslat the data
receiver. If the number of SACK blocks at a datzeieer is more
than four, then the data receiver is unable to nefudl SACK
information. In this case when consecutive acks Igst, the
intermediate router will have less accurate staftariation.

Table 1 presents the number of SACK options in BEgments
based on a few randomly selected trace files frhen Internet
backbone captured in June 2008. Recall that atmari4 SACK
options can be included in a TCP segment. For segnveth 1,
2, or 3 SACK option(s), the TCP header length isckled to
determine if another SACK option could have beepeaped to
the TCP header. TCP segments with 4 SACK optionsady
have a full TCP header. Less than 0.5% of the T&fments that
include SACK options do not have enough space fmthreer
SACK option. Assuming all TCP traces follow a semipattern,
the state of the receive buffer can be construatedirately most
of the time.

Even though the state of receive buffer may becuaete, having
a partial state of the out-of-order data in thesiez buffer would
be still enough to detect data reneging instaribies.reasoning is
that we expect a reneging data receiver will puaiyef the out-
of-order data as occurs in FreeBSD [7]. Since titerinediate
router has state information about out-of-ordeaddata reneging

instance will be detected when acks with no SACKiaopare
observed.

Table 1. Number of SACK optionsin TCP segments

. Enough space | Not enough space
Tﬁl;AS(ég};n gnttis(;/xlsth for another for another
P SACK option SACK option

n=1 ~88% 0%

n=2 ~11% 0%

n=3 0.7% 0.20%

n=4 n/a 0.15%

Total number of TCP segments 780,798 (100%)

Our software to detect data reneging instanéesnég-deteft
constructs the state of the receive buffer for TRvs that
contain SACKs. An inferred state of the receive féufis
compared with new acks to check for consistency.eiWthe
comparison is consistent, the receive buffer stateipdated.
Otherwise data reneging instance is detected grottesl.

We now describe our model for constructing theestdtreceive
buffer at an intermediate router. The state consiEa cumulative
ACK value and a list of ordered out-of-order dalacks (SACK
blocks) known to be in the receive buffer.

The cumulative ACK value holds the highest ACK eabbserved
for the TCP flow, and is updated when a higher AGHue is
observed. When the cumulative ACK value is updeaeg, SACK
blocks below the cumulative ACK value are deletedinf the
state.

Figure 3 presents our model for constructing andatipg the
SACK block state of the receive buffer. The statenitialized
with the first TCP ack observed in a flow. If thekéhas no SACK
option(s), only the cumulative ACK value is recatdé the ack
includes SACK option(s), each one is added as akSBIGck to
the state.

When the next TCP ack is observed, each report€dkSd@ption

(corresponding to a New SACK Block (N) in Figure B)

compared with the SACK blocks in the receive buffite. Each
SACK block in the receive buffer state is represdrity Current
SACK Block (C) in Figure 3.

The comparison of a new SACK block (N) and a cur®ACK
block (C) is done both on the left (L) and righf) @lges. If each
SACK block is thought of as a set, a comparisotwof sets must
result in exactly one of four cases:

1. Nisasupersetof CN 2 ()

2. Nis a proper subset of QV(=)

3. Nintersects with C, and N and C each have at [eéste of
data not in C and N, respectively
(NNC= @) AI(N2C) AI(NDC)

4. N does not intersect with W N € = @)

Note that the above cases are mutually exclusieehEase is
described in turn. For the given examples, assumdntial
receive buffer state as follows: the cumulative A@&lue is 8

(stateACK 8), and there is one SACK Block (state8AT2-15)
with left and right edges 12 and 15, respectively.

Case 1: When a new SACK block (e.g., SACK 12-17)is
superset of a current SACK block (e.g., stateSACK1%), it
means more out-of-order data had been receivecheatdata
receiver. The current SACK block is updated toewflthe new
SACK block. The update may be in terms of a lefieeextension,
a right edge extension or both. After the updaie, iew SACK
block is compared with the next SACK blocks in gtate. The
reasoning is that a new SACK block may be the sgienf a
number of SACK blocks in the receive buffer state tb possible
ack reordering, and may fill a gap between two SAfdcks.

Case 2: When a new SACK block (e.g., SACK 12-13) Boper
subset of a current SACK block (e.g., stateSACK152- the
comparison implies data reneging (out-of-order dbtal5 had
been deleted from the receive buffer). An instamdedata
reneging is logged for future deeper analysis.

Case 3: Data reneging is detected similarly wherea SACK
block (e.g., SACK 14-20) intersects with a curr&M&CK block
(stateSACK 12-15). Such a case would result whaata receiver
purges some, but not all, of the out-of-order datad later
receives more out-of-order data. The new ack infotihe arrival
of new out-of-order data, 16-20, as well as the ovah of
previously SACKed data, 12-18he state is not updated (to catch
more inconsistencies) until the cumulative ACK idvanced
beyond the SACK blocks that trigger data renegirsgances.

Case 4: If a new SACK block (e.g., SACK 22-25) andurrent
SACK block (e.g., stateSACK 12-15) do not interséhe new
SACK block is compared with the next SACK blocktie state.
If the new SACK block reported is disjoint with af the SACK
blocks in the state, the new SACK block is addethtoreceive
buffer state. The updated receive buffer state mesostateACK
8, stateSACK 12-15, stateSACK22-25.

The model detects data reneging instances only wbiere SACK
options are included in the acks. If a data recgieges all out-
of-order data in the receive buffer, no SACK opsi@ne reported.
In such a case, the receive buffer state would fzamember of
SACK blocks, and the new ack reports no SACK blogk&en
though TCP options field has enough space to regidgast one
SACK option). Reneg-detectalso infers such data reneging
instances.

Data reneging may be inferred spuriously if acks r@gordered
before arriving at the intermediate router. To copéth
reordering, a check is performed on the protoeti§: IP ID and
TCP ACK. When one or both of the fields of an asksimaller
than the previous ack’s values, reordering is detedReordered
acks are not used to update the receive buffee;staey are
discarded.

4. MODEL VERIFICATION

Reneg-detecivas verified with synthetic TCP flows that mimic
data reneging behavior. Data reneging flows weeated using
text2pcaptool, and all of the data reneging flows testedewe
identified correctly as reneging.

Reneg-detecalso was verified by analyzing 100s of TCP flows
from Internet traces provided by CAIDA. Initially seemed that

data reneging was happening frequently. On closspection
however, it turned out that the generation of SA@Ksany TCP
implementations was incorrect (!) according to RR018.
Sometimes SACK information that should have beemt ses
not. Sometimes the wrong SACK information was sdittese
misbehaviors wrongly gave the impression that deteging was
occurring.

Our discovery led us to a side investigation toifyeBACK

generation behavior of TCP data receivers for aewahge of
operating systems [3]. Now, we are developing éhoanlogy
for verifying SACK behavior, and we will apply tmeethodology
to report misbehaving TCP stacks.

Based on the results of the model verification reffae updated
Reneg-detecto identify these misbehaviors, and not reportrthe
as instances of data reneging.

5. RELATED WORK

Previous studies employed passive measurememsetospecific
protocol behavior by analyzing large number of T#Rvs. In
those passive measurement studies, collected fitese were
analyzed to infer the specific TCP behavior.

Paxson [13] presentdcpanaly, a tool which automatically
analyses the correctness of TCP implementationgngyecting
traces collected for bulk data transfers.

Fraleigh [6] describes the architecture and cajtigsil of the

IPMON system which is used for IP monitoring at iSpnP

backbone network. IPMON consists of passive moimgpr
entities, a data repository to store collectederéiles and an
offline analysis platform to analyze the collectida. The authors
analyze individual flows and traffic generated byffedent

protocols and applications and present statistich ss traffic
load (weekly and daily), traffic load by applicai® (web, mail,
file transfer, p2p, streaming), traffic load in Mls. Also TCP
related statistics such as packet size distribut®fT, out-of-

sequence rate, and delay distributions are predente

In Jaiswal [8], the authors introduce a passive swmeanent
technique to infer and keep track of congestiondwim (cwnd)

and round trip time (RTT) of a TCP data sender.ifffer data

senders’ cwnd, the authors construct a replichefiata sender’s
TCP state using a finite state machine (FSM). FSMipdated
through ACKs and retransmissions seen at the daltaction

point.

6. WORK IN PROGRESS

To detect data reneging instances, we need TCFs flowvhich
some SACK options are observed during the datasfeanFor
that, we are filtering CAIDA traces to obtain ofIZP flows with
SACK options to analyze them wikeneg-detect

The summary of Internet trace files provided by DAI by
(year/data collection machine/number of traces lalvlg) is as
follows:

e 2008/equinix-chicago/10
e 2008/equinix-sanjose/6

e 2009/equinix-chicago/12
e 2009/equinix-sanjose/12

¢ 2010/equinix-chicago/3
e 2010/equinix-sanjose/3

The total duration of each trace is 1 hour and ist&®f 60 one
minute traces. In our lab we do not have enoughpctation
power to analyze all of the traces provided. In$teee are
planning to analyze TCP flows from each data seh uwotal
duration of 2-3 minutes. The minutes to be used lvél chosen
randomly.

We are also looking for TCP trace files from otdemains such
as wireless networks where the loss rate is higbar.goal is to
analyze millions of TCP flows usingeneg-detecand document
the frequency of data reneging instances. Basedthese
empirical observations, we will provide the firgiadimentation of
transport layer data reneging in the literature.

7. ACKNOWLEDGMENTS

The authors would like to thank Abuthahir HabeebhiRan,
Jonathan Leighton, Aasheesh Kolli and Ersin Ozkan the
valuable discussions and comments while develofiirggpaper.
This work is supported by the University Researalogkam,
Cisco Systems, Inc.

8. REFERENCES

[1] Allman, M., Hayes, C., Kruse H., and Ostermanr 327.
TCP performance over satellite linih Int'l Conf. on
Telecommunications Syster8g1997).

[2] Bruyeron, R., Hemon, B., and Zhang, L. 1998.
Experimentations with TCP selective acknowledgment.
SIGCOMM Comput. Commun. R@8, 2 (Apr. 1998), 54-
77. DOI= http://doi.acm.org/10.1145/279345.279350.

[3] Ekiz, N., Rahman, A. H., and Amer, P. D. Misbehavin
SACK generation (submitted for publication).

[4] Ekiz, N., Amer, P., Natarajan, P., Stewart, R., brethgar, J.
2010. Non-renegable selective acks (NR-SACKs) forB.
IETF Internet Draft (work in progress).
tools.ietf.org/id/draft-natarajan-tsvwg-sctp-nrs#ktxt

[5] Fall, K. and Floyd, S. 1996. Simulation-based cormspas
of Tahoe, Reno and SACK TCBIGCOMM Comput.
Commun. Re6, 3 (Jul. 1996), 5-21. DOI=
http://doi.acm.org/10.1145/235160.235162.

[6] Fraleigh, C., Moon, S., Lyles, B., Cotton, C., Khih,
Moll, D., Rockell, R., Seely, T., and Diot, S. Q0B.
Packet-Level traffic measurements from the Spint |
backbonelEEE Network 17, 6 (Nov. 2003), 6-16. DOI=
http://dx.doi.org/10.1109/MNET.2003.1248656.

[7] FreeBSD TCP Implementation.
www.freebsd.org/cgi/cvsweb.cgi/src/sys/netinet/

[8] Jaiswal, S., lannaccone, G., Diot, S. C., Kurosgntl
Towsley, D. 2004. Inferring TCP connection chéaegstics
through passive measuremetEEE INFOCOM 3 (Mar.
2004), 1582-1592. DOI=
http://dx.doi.org/10.1109/INFCOM.2004.1354571.

[9] Mathis, M., Mahdavi, J., Floyd, S., and Romanow1896.
TCP selective acknowledgment options. RFC 2018.

[10] Medina, A., Allman, M., and Floyd, S. 2005. Measgrthe
evolution of transport protocols in the interr®GCOMM
Comput. Commun. Re85, 2 (Apr. 2005), 37-52. DOI=
http://doi.acm.org/10.1145/1064413.1064418.

[11] Natarajan, P., Ekiz, N., Yilmaz, E., Amer, P. Qengar, J.,
and Stewart, R. 2008. Non-Renegable Selective
Acknowledgments (NR-SACKSs) for SCTEEEE
International Conference on Network Protocdl®ctober
2008), 187-196. DOI=
http://dx.doi.org/10.1109/ICNP.2008.4697037.

[12] Pahdye, J. and Floyd, S. 2001. On inferring TCRakieh. In
Proceedings of the 2001 Conference on Applications,
Technologies, Architectures, and Protocols For Cotap
CommunicationgSan Diego, California). SIGCOMM '01.
ACM, New York, NY, 287-298. DOI=
http://doi.acm.org/10.1145/383059.383083.

[13] Paxson, V. 1997. Automated packet trace analysi<Céf

implementations. IfProceedings of the ACM SIGCOMM '97

Moveto
» nextC L
block

<

Conference on Applications, Technologies, Architex,
and Protocols For Computer Communicati@@annes,
France, Sep. 14 - 18, 1997). M. Steenstrup, EdCSIAM
'97. ACM, New York, NY, 167-179. DOI=
http://doi.acm.org/10.1145/263105.263160.

[14] Postel, J. 1981. Transmission control protocol. REG.

[15] Shannon, C., Aben E., Claffy, K., Andersen, D., GA&DA
Anonymized 2008, 2009, 2010 Internet Traces.
http://www.caida.org/data/passive/

[16] Stewart, R. 2007. Stream control transmission atdrRFC
4960.

[17] Yilmaz, E., Ekiz, N., Natarajan, P., Amer, P. Deighton, J.
T., Baker, F., and Stewart, R. R. 2010. Througlamatlysis
of Non-Renegable Selective Acknowledgments (NR-SACK
for SCTP.Comput. Commur83, 16 (Oct. 2010), 1982-
1991. DOI=
http://dx.doi.org/10.1016/j.comcom.2010.06.028.

Current Sack Block (C)
MNew Sack Block ~ (N)
Reneging (R)

C.L:NL <

= >

no

Add a

block

R R R
Left Both Right Same Right Both Left
edge edges edge block edge edges edge
- shrinks shrink extends shrinks extend extends
< = > <=
R R R R
yes
Rightedge :
Missing Rightedge - Adda
block exiends:_leﬂ shrinks, left Mnlf;é?cg new
edge shrinks edge extends block

Moveto next M block,
movetothe first C block

Figure 3. Data Reneging Detection M odel

