
Minion—an All-Terrain Packet Packhorse
to Jump-Start Stalled Internet Transports

Janardhan Iyengar∗, Bryan Ford†

Dishant Ailawadi†, Syed Obaid Amin∗, Michael F. Nowlan†, Nabin Tiwari∗, Jeffrey Wise∗

ABSTRACT

Transport layer evolution is stuck. A proliferation of middle-

boxes in the Internet has shifted the waist of the hourglass

upward from IP to include legacy transports [10, 13, 23].

While popular for many different reasons, middleboxes de-

viate from the Internet’s end-to-end design, creating large

deployment “black-holes”—singularities where legacy trans-

ports get through, but any new transport technology or pro-

tocol fails—severely limiting protocol evolution.

To restore the Internet’s openness to innovation at the ends,

we propose the minion suite: a protocols suite that uses legacy

transports—UDP, TCP, and SSL—to provide a generic un-

ordered datagram service between communicating endpoints,

as a substrate atop which more sophisticated transports, such

as those supporting partial-ordering, can be built and de-

ployed. These minions are modified forms of the legacy

transports where the protocols appear unmodified on the wire,

thus making deployability through middleboxes possible. Our

minions provide the basis for a much richer set of services

that can be offered to the ends, thus recognizing the shifting

waist of the Internet hourglass, and creating a powerful new

substrate at the new waist.

1. INTRODUCTION

As Internet applications have changed over the past three

decades, need for transport services outside the strait-jacket

of TCP’s ordered and reliable byte-stream has led to several

alternatives [9, 17, 27]. Since TCP, however, no significant

new transport has seen large-scale deployment.

The waist of the Internet hourglass has arguably moved

upwards to include TCP and UDP [10, 23, 26], as is evident

in the design of new transports, which use UDP encapsula-

tion to traverse middleboxes. While encapsulating specific

transports in UDP solves part of the deployment problem,

this approach is inadequate and possibly detrimental to long-

term deployment efforts, as we discuss in Section 2.

Applications and application developers care most about

services that the networking infrastructure offers to them,

and not how packets look on the wire; that is, they care

about new transport services, not new transport protocols.

On the other hand, middleboxes care most about how pack-

ets look on the wire, and generally do not care about what

services are offered to the applications; that is, changing the

transport protocol’s bits on the wire will require changing

middleboxes to respond to these changes as well. There is

∗Franklin and Marshall College, Email: jiyengar@fandm.edu
†Yale University, Email: bryan.ford@yale.edu

clearly a gap between traditional approaches to offering new

transport services and what middleboxes expect.

The minion suite bridges precisely this gap—enabling rapid

deployment of new transport services while appearing as

UDP, TCP or SSL on the wire. The minion suite includes

TCP-minion and SSL-minion, variants of TCP and SSL that

look exactly like TCP and SSL on the wire, respectively,

while offering an unordered datagram service, with optional

congestion control, to the user above1. The minion suite can

be used by new transports or applications to get more pow-

erful, responsive services at the ends, while managing to get

through existing middleboxes.

2. WHY NOT UDP ENCAPSULATION?

Given that the demand for new transport services exists,

new transport services are being built and depoyed on top

of UDP. Applications such as Internet telephony (Skype),

video streaming (Adobe’s RTMFP for Flash), and bulk back-

ground transport (Bittorrent’s uTP), continue to build their

own narrowly-focussed transport services over UDP, and de-

ploy them as part of the application. To encourage deploy-

ment, transports designed at the IETF are also employing

UDP encapsulation to navigate NATs in the network [22,29].

While the idea of UDP encapsulation seems seductively sim-

ple, this section discusses why simple UDP encapsulation of

a new transport is an inadequate and fragile solution that may

lead to more network encumbrances in the long term.

2.1 A Taxonomy of Transport Functions

To understand how UDP encapsulation fits in the larger

picture of middlebox traversal, we examine the interactions

between middleboxes and the traditionally-end-to-end trans-

port layer. We first factor out functional components within

the traditional transport layer into four sub-layers, as pre-

viously proposed in Tng [10]. Starting from the sub-layer

immediately above the network layer, these are:

The Endpoint Layer factors out communication endpoint

information—port numbers in the current Internet architecture—

that policy-enforcing middleboxes such as firewalls, NATs,

and traffic shapers require for operation;

The Flow Regulation Layer factors out congestion control

and other functions that may require network interaction for

purposes of adapting to network heterogeneity;

1While the minions, as discussed in this paper, are as reliable or
unreliable as the underlying protocol, we are investigating meth-
ods for providing partial reliability to the application, and do not
discuss them in this paper.

1



The Semantic Layer factors out application-oriented services

such as end-to-end reliability and ordering; and

The Isolation Layer is an optional layer, traditionally above

the Semantic Layer, which provides end-to-end cryptographic

security via protocols such as TLS [6] and DTLS [25].

Figure 1 shows how middleboxes interact with and in-

terpose on different transport layer components. NATs and

Firewalls care about port numbers and application endpoint

information, Performance Enhancing Proxies (PEPs) [4] care

about congestion control, Traffic Normalizers [14] use de-

tailed information about the TCP state machine to thwart

network attacks, and Corporate Firewalls are increasingly

starting to employ SSL proxies as trusted intermediaries to

prevent attacks through encrypted channels [19].

Figure 1: A taxonomy of Transport functions showing

how middleboxes interact with the Transport

2.2 Network Considerations

Figure 2 shows how transports are designed and deployed

on the Internet, and a comparison with Figure 1 shows how

new transports conflict with legacy middleboxes.

Figure 2: Transport protocols in the Tng taxonomy

While NATs and firewalls often support both TCP and

UDP, they support TCP flows more efficiently due to the

connection state information it provides. Since NATs cannot

precisely determine a UDP session’s lifetime, an application

wishing to keep a UDP connection alive across a NAT or

firewall must send keepalive packets at least every two min-

utes [3], whereas idle TCP connections require keepalives

only once every two hours [11]. TCP thus has practical ad-

vantages in both bandwidth and power consumption, espe-

cially important for mobile devices, which are frequently lo-

cated behind NATs and firewalls and must keep connections

open to listen for incoming notifications.

While simple home NATs and Firewalls care mainly about

port numbers (application endpoint information), significant

parts of the Internet are behind more sophisticated middle-

boxes [4] which use TCP connection state information and

assume TCP mechanisms, such as ack clocking and flow

control to achieve their ends.

Stateful Firewalls maintain and use connection state for

filtering traffic and to avoid attacks. TCP’s connection-oriented

state machine makes this information easily available. Since

UDP is connectionless, Stateful Firewalls use non-trivial meth-

ods such as Deep Packet Inspection (DPI) and rely on arbi-

trary timeouts and ICMP messages to determine the state of

a session that uses UDP [21], thus creating disincentives for

operators to allow UDP traffic into their networks.

Traffic Normalizers [14] use detailed information about

the TCP state machine to thwart network attacks, and Cor-

porate Firewalls increasingly employ SSL proxies as trusted

intermediaries to prevent attacks through encrypted chan-

nels [19]. Using UDP leads to heavy use of DPI, since both

Firewalls and Traffic Normalizers have less information to

work with than they would have with TCP, and they are thus

heavily incentivized against allowing UDP traffic.

A new transport that runs on UDP appears as one among

the plethora of extant applications that use UDP, and thus

will not be able to navigate broad sledgehammer-like fire-

wall rules often found in corporate (and often hotel) firewalls

that disallow any incoming UDP traffic.

PEPs [4] improve TCP flow performance over unconven-

tional network paths, such as lossy wireless or satellite links,

often by intervening in TCP mechanisms such as flow con-

trol and ack clocking. PEPs ignore UDP traffic, and con-

sequently transports such as SCTP, SST, and DCCP, that use

TCP-like congestion control mechanisms, appear to perform

poorly on these paths when run atop UDP.

All these middleboxes need to be made aware of a new

transport for the transport to be deployable and performant

in the network on top of UDP.

2.3 Yet Another Layer of Multiplexing

Current proposals [22, 29] use UDP port numbers merely

to demultiplex the new transport protocol on top; the identity

of the communicating endpoints is hidden away in a new set

of port number fields (separate from the UDP port numbers)

embedded in the new transport’s protocol headers. There are

thus two sets of port numbers at the ends: the UDP port num-

bers are used to identify the transport protocol—e.g., UDP

port 9899 indicates SCTP atop UDP—plus the inner trans-

port’s SCTP port numbers, used to identify the application

process. The UDP port numbers are thus not usable as a ba-

sis for identifying end-applications, as is commonly done at

firewalls. As a result, while this solution works for NATs,

Firewalls will need to understand the new protocol’s interior

2



headers to enforce network policy based on port numbers,

and until they are able to, administrators will be tempted

simply to block the new transport’s UDP port. Thus, where

an HTTP session over TCP works, an HTTP session over

SCTP/UDP will not, even if the firewall’s policy is intended

to allow web traffic in general.

Future generations of firewalls may eventually understand

the inner transport and enforce policy based on the inner

transport’s port numbers, but this simply brings us back to

where we started, with devices in the network “understand-

ing” and allowing traffic from a relatively static and difficult-

to-evolve set of transports atop IP.

Proposals for UDP encapsulation of new transports [22,

29] miss the point that middleboxes need endpoint informa-

tion, and encapsulating that information does more harm by

triggering an arms race with firewall providers.

2.4 End Host Considerations

Getting user-space transport implementations to perform

competitively with kernel-space implementations is a non-

trivial issue, and requires much more low-level access than

is available to most applications for close to kernel-level per-

formance [7]. Ack-clocked transports, such as SCTP and

SST, rely on tight timing in transmission and delivery of

acks. Coalescence of ack- and data-delivery, which results

from poor interaction between the ack-clocking of data and

process scheduling on the endhosts, leads to increased bursti-

ness in the transport [24], breaking TCP’s self-clocking mech-

anism [15], and resulting in poor performance of TCP-like

congestion control [30]. Deploying highly performant trans-

ports on top of UDP is difficult, and bandwidth intensive ap-

plications will tend to opt for TCP, despite its strait-jacketed

service options, for performance reasons.

Further, new transports that use delay-based congestion

control mechanisms will simply not work in user-space due

to the increased noise in delay signals that comes with data

copying across the kernel-user boundary and with context-

switching latency.

2.5 Legacy Comes With Benefits Too

TCP implementations have been maturing and optimized

over the past 2-3 decades, and detailed instrumentation is

available for learning from and tweaking TCP stacks [2, 12]

Offloading parts of the TCP engine is becoming increasingly

important and relevant [20], improving TCP performance

and efficiency in high-speed networks.

While other parts have been difficult to get deployed, vari-

ants to the original TCP congestion control [15] are com-

monplace in general-purpose OS kernels—likely in large part

due to the fact that congestion control modifications can usu-

ally be deployed without wire-format modifications to TCP.

The major general-purpose Operating Systems—MacOSX,

Windows7, and Linux—all use very different congestion con-

trol algorithms: TCP NewReno, Compound TCP, and CU-

BIC TCP, respectively. As of kernel v2.6.13, Linux has

made it easy for a user to choose from a number of con-

gestion control alternatives in the kernel at run-time2, and

Mac OSX allows enabling and disabling TCP variants such

as NewReno and SACK through sysctls. Kernel mechanisms

for plugging different congestion control variants for TCP

already exist in popular Operating Systems, and where they

do not exist yet, they represent a worthy goal for kernels that

are already dealing with diverse network conditions ranging

from low-bandwidth and lossy cellular connectivity on mo-

bile and handheld devices to high-bandwidth connectivity on

desktops within enterprise networks.

Legacy TCP thus comes with a performant and functionality-

rich body of software artifacts and tools, as well as widespread

human experience in the industry, which generally outweighs

the costs of deploying and performance-tuning a new trans-

port atop UDP.

3. OVERVIEW OF THE MINION SUITE

The goals of the minion suite are as follows:

• Overcome network inertia: Provide robust, low-latency

(out-of-order) forwarding of any transport or application

PDU through middleboxes supporting only TCP or SSL.

• End-to-end enforcement of transport- and application-neutrality:

Provide ability to deploy TCP, SCTP, SST, and new trans-

port services atop secure end-to-end channels.

• Substrate-agnostic transport and application operation:

A transport or application should not generally need to

know which specific minion it is using on a given path.

The minion suite employs modified forms of UDP, TCP,

SSL, and DTLS to provide a low-latency datagram service,

as shown in Figure 3.

Figure 3: The minion protocols and their place in the

Tng taxonomy

TCP-minion provides a datagram service while appear-

ing as TCP on the wire, with the option of turning conges-

tion control OFF, and with the option of providing transport

layer security through DTLS. UDP-minion provides a data-

gram service with no congestion control but exposes end-

point (port number) information. SSL-minion provides a se-

cure datagram service while appearing as SSL on the wire,

2ls /lib/modules/‘uname -r‘/kernel/net/ipv4/ on a Linux-2.6.34 sys-
tem shows an impressive 11 distinct TCP congestion control mech-
anisms available as kernel modules.

3



with the option of turning congestion control OFF. Transport

protocols, such as TCP, SCTP, SST, and DCCP, trimmed to

run on the minion suite, continue to provide their services to

applications in the way they were designed to.

In the following three sections, we now describe each of

the three minions in more detail.

4. A UDP MINION

Perhaps the simplest of the minions, UDP-minion is a

UDP encapsulation of the transport or application protocol,

but with one key difference from current proposals [22,29]—

UDP-minion does not add an additional point of demulti-

plexing. While the recent proposal for Generic UDP Tunnel-

ing (GUT) [18] suggests such a possibility, our UDP-minion

deliberately avoids a UDP demultiplexer followed by an up-

per layer demultiplexer, in keeping with Feldmeier [8] and

Tennenhouse [28].

5. A TCP MINION

The goal of TCP-minion is to provide a datagram service

to the application above it, while appearing as TCP on the

wire. Our design of TCP-minion does not change the TCP

protocol per se, but achieves a datagram service by trans-

forming application messages into encoded messages which

are delimited by marker-bytes in the underlying bytestream.

At a TCP-minion receiver, the encoded messages are ex-

tracted from between marker-bytes, and decoded before de-

livery to the application. Thus, in TCP-minion, application

data is transformed before transmission, and the API at the

ends is modified, but the TCP protocol is not modified—

TCP-minion sits close to the transport-application boundary,

and uses the underlying TCP bytestream for transmitting and

extracting application messages.

Providing a datagram service within a TCP bytestream

requires delimiting application messages in the bytestream.

While record delimiting is commonly done by application

protocols such as HTTP, SIP, and many others, a key prop-

erty that we require to provide a true datagram service is that

a receiver must be able to extract a given message indepen-

dently of other messages. That is, as soon as a complete

message is received at a TCP-minion receiver, the message

delimiting mechanism must allow for extraction of the mes-

sage from the bytestream, irrespective of what earlier mes-

sages have or have not been received.

When an application sender needs to send a message to

the receiver, the TCP-minion sender employs the use of marker-

bytes to delimit the message in the TCP bytestream and fol-

lows a three-step process:

1. The application message is encoded using the minion-

encoding described below, so that all occurrences of the

marker byte are eliminated from the message,

2. The marker byte is inserted at the beginning and at the

end of the message,

3. The encoded message, along with the marker bytes, is

sent into the TCP bytestream.

Figure 4: An illustrative example showing the steps in a

TCP minion transfer

Figure 5: An illustrative example showing TCP minion

behavior when loss occurs.

The TCP-minion receiver uses the following 3-step pro-

cess for extracting and delivering application messages to

the receiving application:

1. The received TCP segments, both the ones received in-

order and the ones received mis-ordered, are scanned for

marker bytes.

2. If two marker bytes are found, and if all bytes between

the two markers have been received, the minion-encoded

message between the two markers is extracted.

3. The extracted message is decoded and delivered to the

application.

Figure 4 shows an illustrative example, where three ap-

plication messages are transferred using TCP-minion. Note

that TCP-minion does not assume anything about TCP seg-

ment boundaries; minion-encoded messages may be segmented

arbitrarily by TCP, as shown in the figure. TCP-minion is de-

signed to work with arbitrary segmentation, to be resilient to

middleboxes that transparently re-assemble and re-segment

the transmitted TCP segments. Figure 5 shows the same

transfer, but this time with a loss of one segment during the

transfer. TCP-minion delivers the only fully received mes-

sage to the application, even though the message is not re-

ceived in order. Legacy TCP would not have delivered any

part of the bytestream in this scenario.

5.1 The TCP-Minion Encoding

TCP minion uses Consistent Overhead Byte Stuffing (COBS)

for eliminating all occurrences of the marker byte in the ap-

plication message. This mechanism was originally proposed

by Cheshire and we direct the reader to [5] for a complete de-

scription including detailed evaluations; we provide a brief

summary of the COBS mechanism below.

4



Assuming zero as the marker byte, COBS first fragments

every message at the existing zeros in the original app mes-

sage, and then eliminates each zero while inserting a “pointer”

to the deleted zero at the beginning of the corresponding

fragment. Thus, each zero in the message is effectively re-

placed by a non-zero number at a different location, which

results in a size-preserving transformation that eliminates all

zeros in the message. When zeros are sparse in the origi-

nal message, however, special “pointers” are inserted in the

message without any deletions, leading to some overhead.

This overhead is limited to a maximum of 1 additional byte

in every 254 bytes, or 0.4%.

TCP minion first uses COBS to encode an incoming ap-

plication message, so that all zeros are eliminated, and then

both prepends and appends a zero byte to the message to de-

limit the message at both ends. While inserting a zero byte

only at the beginning or end of each message (but not both)

would be sufficient to delimit messages in a stream deliv-

ered in-order, but would prevent TCP-minion from passing

received messages to the application as early as possible in

the common case in which network middleboxes do not re-

segment the TCP stream. For example, if TCP-minion in-

serted a zero byte only at the end of each message, then a

complete message arriving out-of-order immediately after a

dropped packet in TCP sequence number space would ap-

pear indistinguishable to the receiver from the incomplete

tail-end of a longer message, requiring the receiver to wait

until the immediately preceding “hole” is filled before de-

livering the (already-complete) message to the receiving ap-

plication. By placing zeros at both the beginning and end

of each message, the receiver can determine with certainty

that it has received a complete message and pass it on to the

application as soon as it arrives.

6. AN SSL MINION

While we expect TCP-Minion to provide a relatively low-

overhead but effective delivery substrate for deploying new

transports atop existing middleboxes, it has an important

disadvantage: middleboxes often attempt to—and expect to

be able to—“see inside” of TCP streams to perform Deep

Packet Inspection and even manipulation of application-level

protocols. It has become a de facto rule that anything in a

TCP or UDP stream that is not encrypted is “fair game” for

middleboxes to inspect and manipulate. As a result, the only

way for an application to communicate “end-to-end” and be

certain that its session will not be inspected or manipulated

by middleboxes is by encrypting and authenticating it cryp-

tographically. Network-layer encryption mechanisms such

as IPsec [16] have suffered deployment challenges similar to

those new transports have faced and are still uncommon out-

side the niche of corporate VPNs, and new encrypted trans-

ports are likely to be blocked by many firewalls. The only

way to form an end-to-end encrypted path on today’s Inter-

net that is nearly universally supported, therefore, is for that

encrypted path to appear to the network as an SSL stream

(atop TCP), because that is the mechanism the Web uses

for now-crucial E-commerce traffic. While a network ad-

ministrator or ISP might disable nearly any other port while

still claiming to provide “Internet access,” he would be hard-

pressed to disable SSL connections to port 443 while making

such a claim.

While we could simply layer SSL atop TCP-Minion, do-

ing so would have two severe shortcomings. First, although

TCP-Minion supports out-of-order message delivery, SSL

supports only in-order delivery and thus, unmodified, would

simply place streams back in-order at the receiver and de-

feat the primary performance benefits TCP-Minion provides.

Second, since TCP-Minion uses COBS to demark message

boundaries, layering SSL atop this COBS encoding would

make the SSL stream appear fundamentally different than it

does when layered directly atop TCP, e.g., for HTTP traffic,

and thus would make it impossible for SSL-Minion streams

to “masquerade” as HTTPS connections to port 443 for ex-

ample. Thus, to achieve out-of-order delivery while maxi-

mizing traversal capability, we must modify SSL to provide

out-of-order delivery while remaining indistinguishable on

the wire from conventional SSL over TCP, without adding a

new network-visible encoding layer such as COBS.

To accomplish this, we observe that the SSL protocol al-

ready breaks its communication into records, separately en-

crypts and authenticates each record, and prepends a ver-

sion/type/length header to each record it transmits on the

underlying TCP stream. To convert SSL into an out-of-order

delivery protocol, therefore, we only need to modify SSL so

that the receiving host can recognize, authenticate, and de-

liver to the application the contents of any complete record

that it receives, even if not all the contents of the underlying

TCP stream before that record has yet been received. Ac-

complishing this goal involves two specific challenges: first,

enabling the receiver to recognize a record out-of-order in a

received TCP stream; and second, ensuring that the receiver

is able to decrypt and authenticate such a record without nec-

essarily having received all preceding records.

To recognize records out-of-order, we first use SSL’s ba-

sic record structure as a “weak” recognizer, to infer where

a record might begin in a partial TCP stream. Each SSL

record starts with a type/version/length header, which we

scan for in any TCP segment SSL-Minion receives. En-

crypted SSL data could contain a byte sequence that looks

like a type/version/length header, however, which our pre-

liminary scan might falsely recognize as the beginning of

a record. Fortunately, SSL already provides a means be

certain whether the apparent record header is indeed valid:

simply attempt to decrypt and authenticate the message. If

we have attempted to decode a “false” record header, then

SSL’s cryptographic record authentication mechanism will

fail. When decoding SSL records in-order, such a failure

would be fatal (terminating the underlying TCP connection).

In SSL-Minion where false positives are possible, however,

we simply take an out-of-order record decryption failure as

an indication of a false record header, and ignore it.

SSL-Minion’s second technical challenge is to ensure that

the receiver’s ciphersuite can decrypt and authenticate a record

5



without all prior records already having been received. Stream

ciphers cannot be used with SSL-Minion, for example, be-

cause they fundamentally require decryption to be done in-

order. Fortunately, most SSL ciphersuites today use Cyclic

Block Chaining (CBC) with a fresh Initialization Vector (IV)

transmitted as part of each record, so that each record’s start-

ing encryption state is independent of all others, thus allow-

ing for out-of-order decryption.

SSL’s authentication mechanism poses a slight problem,

however, because the implicit “pseudo-header” that it au-

thenticates along with the content of every packet includes

a sequence number that is incremented once for each record

transmitted. When SSL-Minion receives a TCP segment

out-of-order containing an SSL record, however, the receiver

knows the byte-oriented TCP sequence number of that record

in the TCP stream, but does not know the record-oriented

SSL sequence number. Since records are variable-length,

the SSL record to be authenticated out-of-order (following

at least one “hole” in TCP sequence number space) might be

preceded by a small number of large records or a larger num-

ber of small records. Two solutions to this problem present

themselves, which we intend to explore. First, we could

modify the SSL ciphersuite slightly, to use byte-oriented TCP

sequence numbers in place of the record counter; this would

serve the same cryptographic purposes (e.g., to prevent re-

play attacks) while using only information the receiver is

guaranteed to have even when a record arrives out-of-order.

The second approach is to leave the SSL ciphersuite un-

modified, but attempt to predict the correct record number

to use in out-of-order packet decryption and authentication,

perhaps trying several possible record numbers if necessary.

The first approach is likely to be cleaner and more efficient,

but the latter has the advantage of requiring no modification

to SSL ciphersuites or the SSL negotiation process.

7. IS MINION DEPLOYABLE?

To enable deployment of new transport services atop the

minion suite, the minion protocols needs to be deployed first.

The changes we need to make to UDP, TCP, and SSL in

endhosts are described below:

• UDP-minion requires no modifications to UDP; the trans-

port and/or application atop UDP-minion need to use port

numbers that identify the application endpoints. Any ad-

ditional headers required for new services are encapsu-

lated within the UDP-minion payload.

• TCP-minion requires COBS encoding, which can be done

in user-space, and requires no modifications at the sender-

side. At the receiver, the TCP implementation will need

to be modified to allow delivery of out-of-order data up

to the COBS decoder. We have implemented a prototype

of such an API extension to TCP in Linux, by adding an

SO UNORDERED socket option to the TCP socket.

• SSL-minion similarly needs the same kernel API exten-

sion to TCP at the receive side; all other changes required

can be implemented in the user-space SSL library.

• In addition to changes to the TCP receiver as discussed

above, we are exploring sender-side modifications that are

required to disable TCP’s congestion control.

Arguments can be made for the deployability of the end-

host changes to legacy TCP and SSL for TCP-minion and

SSL-minion, such as the momentum behind low-latency web

transports such as Google’s SPDY [1]. Perhaps the strongest

arguments for the deployability all minion protocols are that

none of them requires modifying any middlebox, and that

deploying the minion protocols enables deployment of hith-

erto undeployable transport services.

Acknowledgments: This research is sponsored by the

NSF under grants CNS-0916413 and CNS-0916678.

8. REFERENCES
[1] SPDY: An Experimental Protocol For a Faster Web.

http://www.chromium.org/spdy/spdy-whitepaper.

[2] The Web100 Project. http://www.web100.org.

[3] F. Audet, ed. and C. Jennings. Network address translation (NAT) behavioral

requirements for unicast UDP, Jan. 2007. RFC 4787.

[4] B. Carpenter and S. Brim. Middleboxes: Taxonomy and Issues, Feb. 2002. RFC

3234.

[5] S. Cheshire and M. Baker. Consistent Overhead Byte Stuffing. In ACM

SIGCOMM, Sept. 1997.

[6] T. Dierks and E. Rescorla. The transport layer security (TLS) protocol version

1.2, Aug. 2008. RFC 5246.

[7] A. Edwards and S. Muir. Experiences implementing a high performance TCP in

user-space. Computer Communications Review, 25(4):196–205, Oct. 1995.

[8] D. C. Feldmeier. Multiplexing issues in communication system design. In

SIGCOMM, Sept. 1990.

[9] B. Ford. Structured streams: a new transport abstraction. In SIGCOMM, Aug.

2007.

[10] B. Ford and J. Iyengar. Breaking up the transport logjam. In HotNets-VII, Oct.

2008.

[11] S. Guha, Ed., K. Biswas, B. Ford, S. Sivakumar, and P. Srisuresh. NAT

behavioral requirements for TCP, Oct. 2008. RFC 5382.

[12] H. S. Gunawi, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau. Deploying

Safe User-Level Network Services With icTCP. In OSDI 04, pages 22–22.

2004.

[13] M. Handley. Why the Internet only just works. BT Technology Journal,

24(3):119–129, 2006.

[14] M. Handley, V. Paxson, and C. Kreibich. Network Intrusion Detection: Evasion,

Traffic Normalization, and End-to-end Protocol Semantics. In SSYM’01:

Proceedings of the 10th conference on USENIX Security Symposium, pages

9–9. 2001.

[15] V. Jacobson. Congestion avoidance and control. pages 314–329, Aug. 1988.

[16] S. Kent and K. Seo. Security architecture for the Internet protocol, Dec. 2005.

RFC 4301.

[17] E. Kohler, M. Handley, and S. Floyd. Datagram congestion control protocol

(DCCP), Mar. 2006. RFC 4340.

[18] J. Manner, N. Varis, and B. Briscoe. Generic UDP Tunnelling (GUT), July

2010. Internet-Draft draft-manner-tsvwg-gut-02 (Work in Progress).

[19] K. Marko. Using SSL Proxies To Block Unauthorized SSL VPNs. Processor

Magazine, www.processor.com, 32(16):23, July 2010.

[20] J. Mogul. TCP Offload is a Dumb Idea Whose Time Has Come. In HotOS IX,

May 2003.

[21] S. Northcutt, L. Zeltser, S. Winters, K. Kent, and R. Ritchey. Inside Network

Perimeter Security. SAMS Publishing, 2005.

[22] T. Phelan. DCCP Encapsulation in UDP for NAT Traversal (DCCP-UDP), Aug.

2010. Internet-Draft draft-ietf-dccp-udpencap-02 (Work in Progress).

[23] L. Popa, A. Ghodsi, and I. Stoica. HTTP as the narrow waist of the future

Internet. In HotNets-IX, Oct. 2010.

[24] R. Prasad, M. Jain, and C. Dovrolis. Effects of interrupt coalescence on network

measurements. In Workshop on Passive and Active Measurements (PAM), 2004.

[25] E. Rescorla and N. Modadugu. Datagram transport layer security, Apr. 2006.

RFC 4347.

[26] J. Rosenberg. UDP and TCP as the new waist of the Internet hourglass, Feb.

2008. Internet-Draft (Work in Progress).

[27] R. Stewart, ed. Stream control transmission protocol, Sept. 2007. RFC 4960.

[28] D. L. Tennenhouse. Layered multiplexing considered harmful. In 1st

International Workshop on Protocols for High-Speed Networks, May 1989.

[29] M. Tuexen and R. Stewart. UDP Encapsulation of SCTP Packets, Jan. 2010.

Internet-Draft draft-tuexen-sctp-udp-encaps-05 (Work in Progress).

[30] M. Zec, M. Mikuc, and M. Zagar. Estimating the Impact of Interrupt

Coalescing Delays on Steady State TCP Throughput. In SoftCOM, 2002.

6


