

Stochastic Ordering for Internet Congestion Control

Han Cai, Do Young Eun, Sangtae Ha, Injong Rhee, and Lisong Xu

PFLDnet 2007 February 7, 2007

NC STATE UNIVERSITY High-Speed TCP Variants

- Many High-speed TCP variants have been proposed
- High-speed protocols can be divided into three categories
- Can we compare loss-based protocols?

NC STATE UNIVERSITY Example of Growth Functions

3

throughput), they could have widely different second or high-order behaviors.

NC STATE UNIVERSITY CoV – one example of second order

- CoV, standard deviation over mean, is commonly used by practitioners to compare the stability of protocols.
- Higher CoV also affects the general well beings of the network including utilization, queue oscillation, packet loss characteristics

Definition: for random variables, X and Y,

$$\begin{array}{|c|c|c|c|c|} \hline X & \leq_{cx} \hline Y & \\ \hline means & E\{f(X)\} & \leq & E\{f(Y)\} \end{array}$$

for any convex function f, e.g, f = variance.

 If X ≤_{cx} Y in convex ordering, it means X is less variable than Y.

[4] Y. Zhang, N. Duffield, V. Paxson, and S. Shenker, "On the constancy of Internet path properties," ACM SIGCOMM IMW 2001

[5] E. Altman, K. Avrachenkov, and C. Barakat, "A Stochastic Model of TCP/IP with Stationary Random Loss," ACM SIGCOMM 2000

[6] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, "Modeling TCP Throughput: a Simple Model and its Empirical Validation," ACM SIGCOMM 1998

Given window profiles f(t) and g(t), h(t) = f(t)/g(t) is monotonically decreasing,

then $f(t) \leq_{cx} g(t)$. Concave < Convex • E.g. f(t) = log(t) $g(t) = t^2$ $f(t) = t^{0.5}$ $g(t) = t^2$ $f(t) = 0.5t^2$ $g(t) = 3t^3$

- During stationary loss, concave has less variance because its windows are mostly around the mean so that its variance is small.
- <u>During non-stationary loss, concave-convex has also its windows</u> <u>mostly around the mean.</u>

NC STATE UNIVERSITY NS2 Simulation verification

- Dumbbell, bottleneck 250Mbps, RTT 100ms,100% BDP buffer size
- Loss generated by predefined models and by using background traffic
- Background Traffic (20% of total link bandwidth)
 - Type I (five long-lived flows), Type II (300 web sessions)
- Five pseudo protocols simulated
 - Root, Linear, Power (Square), Exponential, Concave-Convex
- Measure the CoVs of window sizes of the five pseudo protocols.

NC STATE UNIVERSITY NS2 Simulation Result

 The result confirms the same ordering predicted by our analytical result

NC STATE UNIVERSITY Testbed (Dummynet) Setup

NC STATE UNIVERSITY CoV and Link Utilization

Buffer size (1MB), four HS flows with the same RTT (40ms – 320ms)

Conclusion and Future Work

- Window growth function determines its relative stability.
- Stochastic Convex Ordering can be applicable to loss-based protocols.
- Concave-Convex protocols tends to give the smallest rate variation (BIC, CUBIC).
- Rate variations can affect the general well-beings of the network including utilization, queue oscillations and packet loss characteristics.
- Dynamics of aggregated flows and their impact on the general health of the networks would be our future work.

Q & A

More experimental results are available at http://netsrv.csc.ncsu.edu/convex-ordering

Thank you for your participation