

Analysis of 10GbE using Hardware Engine for Performance Tuning on LFN

T. YOSHINO, J. TAMATSUKURI, K. INAGAMI, Y. SUGAWARA, M. INABA, K. HIRAKI

Data Reservoir Project, The University of Tokyo, Japan

Feb/08/2007

Background Popularization of 10GbE WAN

- State-of-the-art Internet technology
 - 10 Gigabit Ethernet (10GbE)
 - Popularization of
 - Large bandwidth
 - Wide area
 - Packet-exchange (L2)

Network

- 10Gbps end-to-end communication
 - World wide grid computing
 - Mass storage synchronization
 - Multimedia distribution

Background 10GbE Debugging Issue

- How can we utilize 10Gbps in end-to-end communication?
 - Technology for large bandwidth and large delay is immature
 - We cannot attain speed by simply replace NIC to 10GbE one
 - Sometimes, throughput becomes lower than 1GbE
 → Cannot be explained clearly
 - We should clarify these problem by precise measurement
 - We need an analyzer for 10GbE era

TCP/IP on LFN (FLD)

- Rate suppressing by congestion avoidance
 - Packet losses lead to low utilization
 - Large delay → Long time for recovery
- Bursty transfer
 - NIC transmits requested data immediately
 - \rightarrow Burst, idle, burst, idle, ... in period of RTT
 - Packing of short frame (like ACK) by switches
 - \rightarrow Heavy load to hosts, Buffer overrun in switches

Precise Timestamp (Raw Behavior on Medium)

- Software-based analysis at end-node cannot analyze raw behavior on medium
 - Medium \rightarrow NIC \rightarrow Bus \rightarrow Kernel (\rightarrow e.g. tcpdump)
 - The result of analysis includes the effect of buffering and scheduling inside PC
- We want to capture flow at point as near to medium as we can
 - Tag precise timestamp right after MAC layer
 - Analyze pressure to NIC, Bus, OS
 - → We need tapping and Hardware support

Research Overview

- We developed analysis system for 10GbE
 - Software-hardware coordination
 - \rightarrow We gave commodity PC enough capability
 - Long-time logging
 - Precise timestamp of receiving time
 - Logging of whole headers
 - Flexible analysis on PC
- Evaluated the utility of our equipment
 - Identification of problems of TCP transfer on LFN
 - Analysis of performance and characteristics of our intercontinental 10GbE WAN

TAPEE

(Traffic Analysis Precise Enhancement Engine)

- Duplicate packets by optical tap
- Pre-process packets by hardware engine
- Log and analyze by logging host

Hardware Engine TGNLE-1

Logging host IBM eServer x345

TAPEE's Hardware Engine

- Implemented on our FPGA-based 10GbE testbed TGNLE-1
- 3 pre-processing
 - Clipping \rightarrow Reduce data input to logging host
 - Time stamp by hardware \rightarrow Precise arrival time data
 - 100ns: Enough to distinguish frames in 10GbE
 - Packing multiple frames \rightarrow Reduce interruption

Feature of TAPEE

- Long-time logging to HDD
 - We do not have to adjust timing
 - Different from memory-based short-time logging
- Raw header logged to commodity PC
- Sent directly through 10GbE
 - We can start analysis immediately
 - Programmability and flexibility
- Programmable hardware
 - Easy to extend
 - Stream embedded into TCP/IP e.g. iSCSI

Evaluation

- We performed analysis of TCP transfer on LFN
- We want to show two results
 - Behavior of TCP transfer on LFN in microscopic view
 - Difference between...
 - IPv4 and IPv6
 - W/ and w/o hardware support
 - Comparison of the effect of pseudo-LFN and real-LFN

Real-LFN with 508ms RTT Round the World Circuit

Network used for LSR Challenge < 30000km

Pseudo-LFN with 500ms RTT LFN In Lab by Network Emulator

- Analyzing only effect of delay
- Virtually inserts delay
 - Store in DRAMs and forward after X ms.

Anue H Series Network Emulator

[EXP #1] Observing Burstness of Data Packets

- Investigating the effect of large delay by pseudo-LFN
- Compare IPv4 (TOE) and IPv6 (Software) performance
- Transfer on pseudo-LFN
 - Simple single stream TCP/IPv4 and TCP/IPv6
 - Memory to memory transfer using Iperf 2.0.2
 - Chelsio T310 10GbE Adapter on PCI-X 2.0 slot
 - Bus is not bottleneck. CPU bottleneck
 - Pseudo-LFN by Network Emulator
 - Virtually inserts 250ms delay for each channel

Host Spec. & Conf.

- 9000 octet frame
- BIC-TCP
- Hardware support for TCP
 - For IPv4

- IBM eServer x260
- TOE (TCP Offload Engine) at receiver
- For IPv6
 - N/A
- Hardware supported packet pacing
 - IPG (Inter-Packet Gap) lower limit is extended to 872 octet

WAN PHY Problem

- WAN PHY bottleneck
 - 9.28Gbps
 - Not avoidable when we use OC-192c based
 10GbE WAN
 - Bursty data forwarded from LAN PHY domain (edge network) may collide and be discarded
 - We extended IPG to suppress rate in fine granularity to meet this bottleneck of real-LFN

Discussion: EXP #1

- TOE reduced bursty transfer
 - Offloading assists precise rate suppressing
- Precise pacing is essential for effective congestion avoidance
 - Help congestion point search to work well
 - Not to loss at LAN to WAN conversion point

[EXP #2] Comparison of Real-LFN and Pseudo-LFN

- Clarifying effect of real-LFN by microscopic measurement
 - TCP on real-LFN has lower performance than pseudo-LFN sometimes
 - We have limited chance to perform experiments on real-LFN

 \rightarrow Large part of our whole work is done by using pseudo-LFN

→ Clarifying difference between real-LFN and pseudo-LFN is important

Observe and Compare ACK Before and After Passing LFN

Packet Interval Histogram of Incoming ACK to Sender After Passed Pseudo-LFN

Change of Packet Interval

Interval of small packets are shorten

Effect of Real-LFN on Packet Interval

Discussion: EXP #2

- Short ACK packets are packet together by some switch in real-LFN
 - It leads to bursty ACK and moreover to bursty DATA
 - ACK pacing has good effect, too

Current Achievement

- Internet2 Land Speed Record (LSR)
 - http://www.internet2.edu/lsr/
 - We are holding records
 - IPv4: 8.80Gbps over about 45 min
 - IPv6: 6.96Gbps over about 30 min
- We are going to update
 To be continued to next paper

Summary

- We developed long-time precise flexible analysis system for 10GbE
 - Coordination of FPGA-based hardware and commodity PC
- Using our equipment we detected and clarified problems of TCP transfer on LFN
 - The effect of delay in microscopic view
 - Difference between pseudo-LFN and real-LFN
- We have demonstrated the utility for management and development of 10GbE

Acknowledgement

- Experiments supported by
 - Prof. Akira KATO of The Univ. of Tokyo
 - JGN II, IEEAF, WIDE Project
 - Pacific Northwest Gigapop
 - AlaxalA Networks
- Light paths provided by
 - JGN II, WIDE, SURFnet, IEEAF, CANARIE
- Equipments provided by
 - Anue Systems, TOYO Technica
 - PFU, Foundry, Force10, AlaxalA