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Key Development in Network Technologies

Backbone:
o Lambda-Grids: Up to 10 Gbps (OC-192) circuits.
e.g., National Lambda Rail, DoE UltraScienceNet

Access:
o Passive Optical Networks: 1/10 Gig EPON.

Adapters:
o 1/10 Gig Network Adapters.
o Standardization of 100 Gig Ethernet. (IEEE study group)

With these we have the ability to establish:
o High-capacity end-to-end connections.

o End-to-end dedicated circuits.



Limited End-System Capacity

Disk Speeds:
0 SATA: 2.4 Gbps (3.0 Gbps reduced by 8/10 coding.)

Bus Speeds:
0 133 MHz 64-bit PCI-X: 8.5 Gbps
o PCI-E i1s much faster (8 GBps)

Memory/ Cache contentions.

Overloaded CPU (Particularly in single
processor environments)

End-system not keeping pace with the network
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End-System Bottleneck

Operations on Received Packet*

1. DMA’ed to Memory.

2. Processed in Network
Protocol Stack.

3. Copied from Kernel-space
to User-space, Delivered
to Socket Buffer.

High-speed
Network

4. Read by Application,
Processed, Written to
Disk, etc.

* Assuming no Zero-copy, RDMA,
Offload Engine Optimizations



‘ Experiments with UDT
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Throughput decreases as CPU becomes overloaded with computational load.




Review of Flow Control Mechanisms

TCP
0 Receiver Advertises Empty Socket Buffer
(Flow Window).
o Sender limits Un-Acked packets to Flow Window.

LambdaStream

o Measures packet inter-arrival time. Compares with
sending inter-arrival time.

o Sends feedback whether to increase/ reduce
sending rate.



Limitations ot Existing Flow Control
Mechanisms

Operates only at Socket — Application
Interface.

o OS and NIC semantics not captured.

Bursty and transient metrics.
o Application reads data in bursts.

When RTT Is high, information Is stale for
sender, particularly when it Is very transient.



Our Goal

Achieve End-System Performance Aware
Flow Control

o Model all possible bottlenecks at end-system.

o Estimate best data transfer rate considering entire
end-system performance.

a This rate, the effective bottleneck rate, Is derived
as function of current workload.

o Match sendinq rate to effective bottleneck rate.
Merits:

o Workload: Less transient => More reliable data.
o Rate Matching across all end-system components.
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Markov Models

Markov Models: Stochastic Analysis of
System Performance

Tools to create Markov Models:

a Petri Nets, introduced in 1962.

o Stochastic Petri Nets (SPN),

0 Stochastic Reward Nets (SRN)

Allows for Automatic Generation of Markov
chains from any of the above models.

Tools: SPNP, SHARPE, MOSEL 2, etc.
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Categorize Tasks

CPU-bound tasks
a0 Uses CPU cycles constantly.

|/O-bound tasks

a0 Uses CPU and I/O alternately.

Network tasks
0 Requires processing of ISRs.
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‘ SRN Model of End-System
(Memory-to-Memory Data Transfer)
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tcpu: Transition for CPU processing  #C: Number of CPU-bound tasks
tdisk: Transition for Disk processing  #l: Number of 1/O-bound tasks

Steady State Analysis => Probability of I/O Task Distribution
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‘SRN Model of End-System
(Memory-to-Memory Data Transfer)

tcpu #i* Hp 110 tdisk

(#i+#C +1) ‘ I Hp

pdisk

Representation
of 1/0 bound task

Interrupt Process
As a Tagged Customer

PEPY ps FCFS
tcpu Hp _Net
Representation #i+#C+1)
of Network 1/0 < Absorption State

Guard: All transitions stop when task thU Transition
reaches Absorption State
for CPU processing
tdisk: Transition
#C=Number of CPU-bound tasks for Disk processing
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Transient Analysis ot SRN Model

Yields Response-Time Distribution from states ‘S’
to ‘A’ as function of Workload

Derive Expected Rate of ISR service

#C #l Hisr

Worklload| ?




‘ SPN Model of NIC
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A n(N)
Corresponds to
bulk-service due
oy to interrupt
coalescing Corresponds to
servicing the ISR
N (Computed from
\ response-time
X < Distribution of a
K Tagged Customer)

Corresponds to
finite buffer

SPN model is employed to determine packet loss as function of A
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Estimation ot Effective Bottleneck Rate
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How to Determine Model Parameters

Representative Workloads
o 1/O-bound Task: Task reading random line from file.
o Network I/0O Task: Task reading data from network.

Use MAGNET to trace above task

o Determine service time distributions at CPU & disk
o Determine Expected Service Rates from these distributions

Approximations
o Capture high-level stochastic metrics.
o Leave out OS & Task specific implementation details.

o Simple model which can be easily developed and analyzed
In software.
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Analytical Results
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‘ Experimental Results — CPU-bound tasks

Dotted line represents analytically determined bottleneck rate
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‘ Experimental Results — I/O-bound tasks

Dotted line represents the analytically determined bottleneck rate
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Discussion

Proposed an approach to achieve
End-System Performance Aware Flow Control

lllustrated model for memory-to-memory data
transfer. Similar models possible for other
scenarios.

Demonstrated that Analytical model yields
effective bottleneck rate as function of workload.
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Challenge

How to Im

2 Analytica
ONCE. T

S

nlement in software?
model parameters to be determined only

nerefore, measure statically (At time of

software installation).
o Construct SRN model at runtime.

o Workload determined at time of data transfer.
Determine tasks, classify them CPU-bound & 1/0O-bound.
Monitor changes in workload.

o Deliver feedback on effective bottleneck rate. (TCP)
o Match sending rate to receiver bottleneck. (Pacing)
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‘ Questions and Comments ?

Thank You

Contact Info: abanerjee@ucdavis.edu
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