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Environments which challenge TCP
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Environments which challenge TCP

* High speed networks — large BDP
* Satellite links — very long delays
* Wireless links —— non-congestive losses

* aDSL links — large latencies

Large BDPs, large queues, large transmission times, random
losses.
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Proposed Solution

Combine ideas from high-speed and delay-based protocols

* Fast recovery to improve throughput on large BDP links

* Allow new flows to gain their share quickly, even with
long transmission times

°* Maintain low queueing delay
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Operation “At the knee of the curve”

) Kr}ee 01l1ff
Throu- f :
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i

Jain’s “Sweet spot” around which delay is low but
throughput is high
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Delay-based Congestion Control
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Delay-based Congestion Control

* Suggested by Brakmo et al in 1994
* Proposed the “Vegas” protocol.
* Others include FAST, Compound-TCP.

* Vegas is one of the more widely explored delay-based cc
algorithms
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Delay-based Congestion Control

Possible benefits:
* No congestive losses
* Doesn’t fill queues, lower delays
* Lower cost per congestion event
Problems:
* Coexistence with loss-based systems
* Difficulty in accurately measuring delay, sampling rates

* Limited correlation between delay and congestion

* Delay scales with number of flows
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Brief Analysis of Vegas
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The expected and observed throughputs are:
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Texp

T obs

- 1)
Tmin
- @
Tmin + 7
Texp — Tobs (3)
w w

(4)
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Once per round trip-time cong. window, w is adjusted:

w + 1 e <
W —  w e € |a, O] (5)
w—1 e > 3

where v and (3 are design parameters.
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Vegas Latency Scaling

S0, at equilibrium Vegas maintains the congestion window
such that

a < € <p (6)
a< -t <[ (7)
a< s <[ (8)
a < 7—Tobs <p ()
For n flows:
-
no < T Z Tobs < N0 (10)
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Vegas Latency Scaling
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Vegas has a number of problems:

* Accurate baseRT"T" is critical to Vegas or it will
underestimate the window size.

* Router queue occupancy scales with the number of
flows, ie. Vegas doesn’t maintain low delay, it only uses
the delay as a signal.

* Vegas responds to any delay, whether or not it is the
cause.

Even in ordinary network environments, with enough Vegas
flows, persistent queueing occurs and queues can overflow.
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Delay-Based AIMD
An Alternative Approach
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Delay-based AIMD

Four main components:

1. Extra congestion event to react to queueing delay.
2. Modified  to drain queues

3. Modified o to improve congestion recovery

4

. Experimental solutions for coexistence with loss-based
flows.
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Extra congestion event

The congestion window is updated similarly to Reno, except
to add an extra congestion event where Cwnd > wy, a

minimum window size:

Cwnd x 3 loss
Cwnd < § Cwnd * (3 T > T (11)
Cwnd + — ACK

7 and 7y are the observed and threshold queueing delay.
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Draining the Queue

3, the backoff factor, is designed so as to empty the queue at
every congestion event.

RTTmzn

=20 RTT (1)

(12)

In practice, an extra factor 0 ~ 0.9 is added to ensure
RTT,;n 18 regularly seen.
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Recovering Quickly

The increase function, « is quadratic in time since the last
back off, as in H-TCP and is balanced against 3 to maintain
fairness.

g = min[1,1410(5 — 1) +0.5(5 — 1)] (13)
= 2(1-0)q (14)
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Coexistence with loss-based flows

Two experimental approaches thus far:

* Sliding delay threshold, 7

* Probabilistic losses at network endpoints
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Coexistence with loss-based flows

* Sliding delay threshold (0 < v < 1)
0= (1 — )10 + V(RT ez — RTThin) (15)

°* When 7 > 79, stop increasing but delay back off until
time since last back off > Ay.
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Coexistence with loss-based flows
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Coexistence of 1 delay and 3 loss-based flows (ns simulation,

propagation delay 100ms, bandwidth 10Mbps, 100 packet queue).
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* Delay-based in isolation

* Results from tests on dumbell topology testbed, linux
2.6.18 source and destination hosts, freebsd dummynet

router.
5,
5 =
TCPA1 TCPI
sender y receiver
. GigE Dummynet GigE
——— switch Router switch _—
TCP2 TCP2
sender receiver
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High Speed Link
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Convergence of DB-AIMD following startup of a second flow.
500Mbps link rate, 250ms RTT, 250ms of buffering.
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High Speed Link
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GeoSat Link
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Congestion windows following startup of a second flow. Reno
(left) and DB-AIMD (right). Note Reno’s 15 min. congestion
epoch duration. 10Mbps bandwidth, 600ms propogation delay,

600ms queue
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GeoSat Link
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Ping times following startup of a second flow with Reno (left)
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DSL Link
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DSL Link
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Review of Design Objectives

* At each congestion event, drain the queue completely
.. yes

* Maintain low queueing delay throughout operation
.. yes

* Quick startup of new flows
.. yes

* Full utilisation of large BDP links
... almost

* (Coexistence
... feasible?
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Outstanding Issues

* Reverse-path queueing

* Several queues with competing trathic — multiple
bottlenecks

* Importance of correlation between delay and congestion
* Spurious delay signals

* Route changes
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Conclusions

* Unlike previous delay-based schemes, DB-AIMD actively
drains router queues, lowering delay

* Coexistence may be possible

* Vegas may have some issues but delay-based schemes
should not be ignored

* Some overlap in work by: MC Weigle, K Jeftay, F
Donelson Smith - Computer Communications, 2005, also

Westwood, FAST
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