Exponential TCP (EXP-TCP) Decoupling End-to-End Efficiency and Fairness Control in High BDP Networks

Shudong Jin Case Western Reserve University

with Dan Liu

PFLDnet workshop, Marina Del Rey, CA

February 8, 2007

Motivation

Existing TCP variants for high BDP networks

- > HSTCP, STCP, BIC TCP, H-TCP, etc
- FAST TCP
- > XCP, VCP
- Decoupling efficiency and fairness control
 - Proposals such as HSTCP and STCP have failed in.
 - Why? Good efficiency requires high aggressiveness in high BDP networks, but "rich-gets-richer" among competing flows (resulting in poor fairness)

Observations

- To achieve good efficiency, we need more aggressive increase (what we care is the absolute increase, e.g., exponential)
- To achieve good fairness, we need to set the relative increase rate of competing flows appropriately

Design

Multiplicative-decrease

$$cwnd \leftarrow (1 - \beta) \times cwnd,$$

> Set β to a small value 1/8, resulting in a moderate decrease and often high network utilization.

Exponential-increase (not multiplicative-increase), on each ACK

$$cwnd \leftarrow cwnd + \gamma \left(1 - \frac{cwnd_0}{cwnd} + \frac{\sqrt{cwnd_0}}{cwnd}\right)$$

> Set γ , which controls the rate of exponential increase, to a small value. The value of *cwnd*₀ is the congestion window size just after the last decrease.

Simplicity (as simple as AIMD)

- > Only two parameters: β and γ .
- > Quick to increment *cwnd*: $cwnd_0$ is a constant until next decrease

Explanation

- To achieve efficiency: absolute increase is exponential
- To achieve fairness: relative increase is ~ \sqrt{cwnd}

Comparison

Simulation

Network and traffic

- > ns-2 simulation, with a simple dumbbell network
- two-way traffic, and saturated reverse path (the pressure of ACK compression).
- Capacity, number of flows, mixed long flows and Web traffic, etc.
- b different propagation delays to eliminate artificial synchronization.

Queue settings

- Bottleneck queue size is always set to BDP.
- RED queues on the bottleneck in most simulations. Standard parameters: min_thresh =0.1*BDP, max_thresh =0.3*BDP, q_weight =0.002, max_p=0.1, gentle =ON.
- ECN bits, although the performance metrics except loss rate do not change much.
- Compared protocols
 - > Standard TCP, HSTCP, STCP, and EXP-TCP (γ =0.05 and β =0.125)
 - SACK1 variant

- RED queues at bottleneck (2.5Mbps to 10Gbps)
- 16 flows in each direction, variable propagation delays (60-100ms)
- Each simulation run lasts 120 seconds
- Average utilization over the last 100 seconds

- RED queues at bottleneck (2.5Mbps to 10Gbps)
- 16 flows in each direction, variable propagation delays (60-100ms)
- Each simulation run lasts 120 seconds
- Average queue length over the last 100 seconds

- RED queues at bottleneck (2.5Mbps to 10Gbps)
- 16 flows in each direction, variable propagation delays (60-100ms)
- Each simulation run lasts 120 seconds
- Average drop rate over the last 100 seconds

- RED queues at bottleneck (500Mbps)
- up to 512 flows in each direction, variable propagation delays
- Each simulation run lasts 120 seconds
- Average utilization over the last 100 seconds

- RED queues at bottleneck (500Mbps)
- up to 512 flows in each direction, variable propagation delays
- Each simulation run lasts 120 seconds
- Average queue length over the last 100 seconds

- RED queues at bottleneck (500Mbps)
- up to 512 flows in each direction, variable propagation delays
- Each simulation run lasts 120 seconds
- Average drop rate over the last 100 seconds

- DropTail queues at bottleneck (1Gbps)
- 3 homogenous flows in one direction, 40ms propagation delays
- The flows start at time 0s, 100s, and 200s, respectively

- RED queues at bottleneck (1Gbps)
- 3 flows in one direction, slightly variable propagation delays
- The flows start at time 0s, 100s, and 200s, respectively

RED queues at bottleneck (1Gbps)

10 flows in each direction, joined by 40 more in time [50,100]

- RED queues at bottleneck (1Gbps)
- 10 flows in each direction, joined by 40 more in time [50,100]

Conclusion

- It is possible to decouple efficiency and fairness control in endto-end congestion control algorithms
- Future work
 - More complex network configurations, multiple bottleneck, RTTs
 - RTT fairness
 - Comprehensive comparisons with other end-to-end algorithms, including BIC TCP, H-TCP, FAST TCP, etc
- Simulation code (ns-2 modification, Tcl)