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Stochastic Ordering for Internet Congestion Control
Han Cai† Do Young Eun† Sangtae Ha‡ Injong Rhee‡ Lisong Xu∗

Abstract— This paper presents a new stochastic tool, called
convex ordering, that provides an ordering of any convex function
of transmission rates of two protocols and valuable insights into
high order behaviors of protocols. As the ordering determined
by this tool is consistent with any convex function of rates, it
can be applied to any unknown metric for protocol performance
that consists of some high-order moments of transmission rates,
as well as those already known such as rate variance. Using the
tool, it is analyzed that a protocol with a growth function that
starts off with a concave function and then switches to a convex
function (e.g., an odd order function such as x3 and x5) around
the maximum window size in the previous loss epoch, gives the
smallest rate variation under a variety of network conditions.
Among existing protocols, BIC and CUBIC have this window
growth function. Experimental and simulation results confirm
the analytical findings.

I. INTRODUCTION

As the Internet evolves in its capacity and characteristics,
demands for new congestion control adapting to the new
operating conditions and goals are constantly increasing. As
a result, many new protocols whose behaviors significantly
deviate from TCP have lately been proposed. An emerging
class of congestion control, called high-speed TCP variants
(e.g., [1], [2], [3], [4], [5], [6]) are designed specifically for
high bandwidth-delay product networks.

Many of these protocols differ mainly in their choices of
window adjustment algorithms, in particular in the functions
used in the growth phase of the congestion window. The
choices of growth functions are diverse from exponential to
some polynomial functions. For instance, STCP [3] uses an
exponential growth function, HSTCP [2] uses a polynomial
function, HTCP [5] uses a square function, BIC [4] uses a
combination of logarithmic and exponential functions, and
CUBIC [7] uses a cubic function.

The goal of this paper is to compare these growth functions,
especially in terms of the second or higher-order stochastic
behaviors of the protocols that employ these functions. A
higher-order stochastic analysis offers a rich set of information
about protocols, including the distribution of transmission
rates, its variance and protocol stability. These are important
information about protocols.

Further, stability is an important goal of congestion control
as it can affect the general well-beings of the network includ-
ing utilization, queue oscillations and packet loss characteris-
tics. Thus, measuring the rate variations of flows is commonly
used in practice to quantify the practical sense of “protocol
stability”. For instance, [6], [7], [8] use the CoV (coefficient
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of variance, defined by the standard deviation over its mean)
of per-flow transmission rate to measure stability. Therefore,
it is clear that in practice, a quantifiable degree of stability is
closely related to some higher order behaviors of protocols.

Calculating the exact distribution of transmission rates∗

stochastically is non-trivial because of states involved in
describing the behavior of protocols. However, there is a hope.
The main contribution of this paper is to use an alternative tool,
called convex ordering, that provides a powerful insight into
the high-order behaviors of protocols. Although it cannot be
used to compute the rate distribution itself, convex ordering
is extremely useful in comparing any convex function of
congestion window sizes of protocols. We find that convex
ordering can be applied to many existing protocols that use
multiplicative decrease (we call MD-style protocols) such as
Scalable TCP, HSTCP, BIC, HTCP, etc. At the minimum, we
can use it to compare the rate variance or CoV of per-flow
rates of protocols (note that the function is convex).

Our study of convex ordering on various existing growth
functions has revealed the followings:
• Under stationary conditions, protocols with a more con-

cave growth function has a lower convex ordering than
those with a more convex function.

• Under non-stationary conditions, a protocol with a growth
function that starts off with a concave function and then
switches to a convex function at the origin (which we call
a concave-convex function) has a lower convex ordering
than those with just concave or convex functions.

Our results indicate that, under a variety of network con-
ditions, a protocol with a concave-convex window growth
function that uses the maximum window size in the last
congestion epoch to be the inflection point, has mostly a
concave window growth profile during steady state where
available bandwidth remains stationary and a concave-convex
window growth profile during non-stationary conditions where
available bandwidth undergoes abrupt change. Thus according
to our analysis, such a protocol has the lowest convex ordering.
Among the existing protocols, BIC and CUBIC have this
property. Our NS-2 simulation and Linux-based experimental
results confirm these findings.

II. RELATED WORK

In the literature there have been numerous results on the
stability and the first-order behaviors of congestion control
protocols based on fluid models [9], [10], [11]. While all these
fluid-based studies provide clear-cut conditions on system
parameters for stability, they do not tell us how to compare
two “stable” protocols in terms of more practically meaningful

∗The transmission rates are obtained by dividing the congestion window
size by RTT. Since we are assuming the same RTT for every protocol we
compare, we use them interchangeably for convenience.
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high order behaviors such as the degree of rate fluctuations.
On the other hand, most results via stochastic models have
focused on the average values of stochastic quantities [12],
[13] or have been obtained under some limiting conditions to
make the analysis more tractable [14], [15]. Still, these studies
do not provide a means to compare the high order stochastic
behaviors of different protocols. The only comparison result
we can find in the literature based on some stochastic model
is in [16] showing that steady-state window sizes with a larger
upper bound is stochastically larger than with a smaller bound,
which is then used for proving the stochastic stability of their
model and obtaining its stationary distribution solution. Yet,
it does not show how to provide any ordering of high-order
protocol performance.

III. CONVEX ORDERING FOR CONGESTION CONTROL

In this section we show there exists a convex ordering
between two congestion control protocols. We first consider
stationary inter-loss processes, and then discuss non-stationary
loss processes later in Section III-D.

A. Model Description

Let T1, T2, . . . be a stationary sequence of intervals between
two consecutive congestion events, and τn =

∑n
i=1 Ti (n =

1, 2, . . .) the time instant at which the nth congestion occurs
(the nth congestion epoch). We denote by W (t) the window
size at time t and define Xn = W (τn), the window size
at the nth congestion epoch. When congestion occurs at
τn, the window size first decreases by some amount, and
then keeps increasing according to some profile f until the
next congestion epoch τn+1. Thus, we can write Xn+1 =
f(Tn, Xn), where the function f = f(t, x) is increasing in t
and x and represents the profile for Xn.

For a given {Tn}, we consider the following recursive
equations for Xn and Yn with profiles f and g, respectively.

Xn+1 = f(Tn, Xn), and Yn+1 = g(Tn, Yn) (1)

Our goal is to compare the stochastic properties of Xn and
Yn in (1). As Tn is stationary in n (its distribution does not
depend on n), we use a random variable T to denote a generic
inter-loss interval. Similarly, we will use X and Y when Xn

and Yn are stationary (which is indeed the case as shown later).
Then, for a given inter-loss interval random variable T , we
consider f and g satisfying the followings:

(C1): The functions f(t, w) and g(t, w) are of the following
form (with a little abuse of notation):

f(t, w)=f(t)+(1−β)w, g(t, w)=g(t)+(1−β)w (2)

where f(t), g(t) are non-decreasing, f(0)=g(0)=0, 0<β<1.
(C2): There exists unique root t0 > 0 for the following:

h(t) := f(t)/g(t) = E{X}/E{Y }. (3)

Without loss of generality, we assume h(t) > h(t0) for t < t0,
and h(t) < h(t0) for t > t0.

(C1) says that the window size is first reduced by βw at each
congestion epoch (MD-style), and then increases according to
f(t) (or g(t)) as the inter-loss interval t increases until the next
congestion epoch. (C2) puts some condition on the shape of
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Fig. 1. (a): Condition (C2) is always satisfied regardless of the value of
E{X}/E{Y }. (b): (C2) is satisfied if we know that E{X}/E{Y }∈(1,∞).

two increasing profiles f and g of protocols under comparison
in relation to the ratio between their average window sizes or
throughput. We note that (3) always has at least one root.
Intuitively, (C2) implies that f(t) tends to increase faster than
g(t) initially but slower afterwards. In other words, we say
that f(t) is more concave than g(t).

In practice, the value of E{X}/E{Y } may be difficult to
compute a priori as it’s a function of f and g. Suppose we
choose f and g such that h(t) is monotone (or, without loss
of generality, decreasing), then regardless of E{X}/E{Y },
we see that (C2) is always satisfied since we already know
that (3) has at least one root. In addition, if we have some
information about E{X}/E{Y } such as its range (e.g., from
knowing the distribution of T ), then even for non-monotone
h(t), (C2) may be still satisfied. For example, in Figure 1(b),
(C2) is satisfied if E{X}/E{Y } lies in (1,∞).

There exists a large set of profiles f, g for which the function
h(t) = f(t)/g(t) is monotone, e.g., the first two examples in
the following. In the last example, h(t) is not monotone, but
(C2) may still be satisfied if some knowledge of E{X}/E{Y }
is available. (Here, f ′ means the derivative of f(t) (similarly
for others) and a′is (i = 1, 2, 3) are all positive constants.)

(i) f(t) and g(t) are strictly concave and convex respec-
tively. In this case, h′ = (f ′g − fg′)/g2 < 0 because
f(0)g′(0)−f ′(0)g(0) = 0 from (C1) and (f ′g−fg′)′ =
f ′′g − fg′′ < 0 from f ′′ < 0, g′′ > 0.

(ii) f(t) = a1t
p, g(t) = a2t

q where p 6= q. Obviously,
h(t) = (a1/a2)tp−q is monotone.

(iii) f(t) = a1

(
(t− a2)3 + a3

2

)
, g(t) = a3t

3, where ai’s are
chosen such that E{X}/E{Y } > a1/a3. This can be
seen from h′ ≤ 0 when t ≤ 2a2, h′ > 0 when t > 2a2,
and h(0+) > a1/a3, h(a2) = a1/a3, limt→∞ h(t) =
a1/a3. (h(t) is similar to the one in Figure 1(b).)

In general, window growth functions can be divided into
three classes according to their shapes: (a) concave ([6], [17]);
(b) convex ([2], [3], [5]); (c) concave-convex ([4], [7]). We
can then use condition (C2) to investigate how these shapes
of window growth functions affect the second and higher order
behaviors of a protocol and its rate fluctuation and to compare
the stochastic properties of these classes.

To proceed, we impose the following assumption:
(A1): The inter-loss intervals Tn (n = 1, 2, . . .) are inde-

pendent and identically distributed (i.i.d.).
Assumption (A1) is well supported. An i.i.d process of

congestion epochs (not packet losses) is commonly observed
in Internet measurement studies (e.g., [18], [19]) and thus,
commonly assumed in the stochastic analysis of TCP (e.g.,



3

[20]). For example, large-scale Internet measurement studies
in [19] show that the loss process is very close to i.i.d.
(using autocorrelation-based Box-Ljung test), and in fact is
well modeled by a Poisson process. Also, the i.i.d. inter-loss
interval (i.e., loss event) allows dependency among congestion
events over different RTTs.
B. Convex Ordering for Congestion Control

In this section we show that there exists a convex ordering
between two congestion control protocols. Before presenting
our main result, we need the following definition.

Definition 1: Let X and Y be random variables with finite
means. Then we say that X is less than Y in a convex order
(written X ≤cx Y ), if E{φ(X)} ≤ E{φ(Y )} for all convex
functions φ for which the expectations exist. ¤

Similarly, we write X ≤icx Y if E{ϕ(X)} ≤ E{ϕ(Y )} for
all increasing convex functions ϕ.

In what follows, we prove that the rescaled window size
X/E{X} for profile f is always less than Y/E{Y } with
profile g in convex ordering. Note that these rescaled variables
have the same mean, and the choice of ϕ(x) = x2 leads to
Var{X/E{X}}≤Var{Y/E{Y }}, i.e., CoV (X)≤CoV (Y ) (by
taking square root in both sides). This kind of ordering holds
true for any other convex function φ, so in general we can
say that the normalized steady-state window size for profile
f is less variable than that for g. In addition, it implies that
the system with f is “more predictable” than with g in the
sense that the window size fluctuations (rate fluctuations) are
more concentrated around its mean, thus requiring a smaller
buffer to absorb temporal fluctuations. Our theorem below
provides a theoretical support in that, for stationary loss-
interval processes, it would be better from the second and
higher order behavior point of view to increase the window
size initially faster and then to slow down later on (i.e., more
concave), rather than the other way around as typically used
in many current TCP protocols (e.g., [5], [2], [3]). Note that
a stationary loss interval process means that the distributions
of all loss intervals do not change over time, rather than that
they are the same.

Throughout the paper, every proof is omitted due to
space constraints and the readers are referred to our
technical report [21] for the details on the proof. We now
present our main theorem.

Theorem 1: Consider two different profiles f and g satis-
fying (C1) and (C2). Then, under Assumption (A1), we have
X/E{X} ≤cx Y/E{Y }. ¤

Theorem 1 shows that convex ordering can compare the
high order behavior of congestion control protocols simply by
comparing the shapes of their increasing profiles.

Remark: In Theorem 1, we have considered the process of
window sizes only at congestion epochs, i.e., Xn = W (τn)
for n = 1, 2, . . .. If we assume that the loss process is Poisson,
i.e., {Tn} is a sequence of i.i.d. exponential random variables,
then we can show that there exists a convex ordering between
normalized window size processes at any time t [21].
C. Protocols with the Same Mean Behavior

This section shows the importance of stochastic method.
When the first-order behavior is under discussion, the fluid

method which captures the average behavior is much simpler
and convenient than the stochastic counterpart. However, in
this section, we show that two protocols with the same fluid
model, i.e., the same average behavior, may be different in
stochastic sense. From the viewpoint of protocol design, this
implies that it is possible to achieve better stochastic property
while preserving the same average behavior.

In addition to (C1) and (C2), suppose that two protocols
satisfy E{f(T )} = E{g(T )}, i.e., they have the same mean
throughput. Then, it follows that

E{Xn+1 | Xn = w} = E{f(T )}+ (1− β)w
= E{g(T )}+ (1− β)w = E {Yn+1 | Yn = w} . (4)

for all w, i.e., it says, “For any given window size at the
current congestion epoch, the expected window size at the next
congestion epoch is the same for both profiles.” In other words,
two protocols with profiles f and g are indistinguishable from
an average point of view and thus have same fixed point and
Lyapunov stability property (i.e., convergence).

Note that there exists a large set of profiles that satisfy (4).
For instance, consider f(t) = c1t

α1 and g(t) = c2t
α2 . Then,

for a given exogenous loss process (i.e., given T ), (C1), (C2)
and E{f(T )} = E{g(T )} are satisfied if ci and αi are chosen
in such a way that c1E{Tα1} = c2E{Tα2}. Theorem 1 asserts
that we can still define a convex ordering between X and
Y despite E{X} = E{Y }. This confirms the importance of
the stochastic approach toward any second and higher order
behaviors of protocols.

D. Convex Ordering under Non-stationary Loss: A Closer
Look at Single Loss Interval

As the loss interval process is more like stationary over a
certain time period, we already know from Theorem 1 that
concave-like profiles work very well. When it dramatically
changes so that its distribution may change, however, Theo-
rem 1 may provide little information about how to ‘shape’
the profile toward the next unpredictable target. Further, when
the target process is non-stationary, the inter-loss intervals Tn

become also non-stationary, and it is impossible to show any
stochastic ordering, invariant with respect to time, between
two protocols. For this reason, we consider only a single loss
interval where the new target is arbitrary.†

Specifically, let x1 denote the window size immediately
after the current congestion epoch, and x2 the window size
just before the next congestion epoch. Assume that x1 and x2

(x1 < x2) are arbitrary given (fixed). We do not consider the
case of consecutive reductions in window size (i.e., x1 > x2).
Clearly, the amount of time to hit the new target x2 from x1

depends on our choice of increasing profile f (and of course
on x1 and x2). Set x = (x1, x2) and let tf be the resulting
inter-loss interval for the profile f = fx. The superscript in fx

represents the dependency of f upon the given x = (x1, x2).
As x is fixed (arbitrary) in this section, to make the notation
simple, we will use f instead of fx. Note that f is increasing,
and we have f(0) = x1 and f(tf ) = x2.

†This should be distinguished from the stationary case, where the ‘actual’
value of the next target is also unknown but its average remains the same.
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Fig. 2. Comparison of concave-convex profile fvx vs. concave profile fv .
tfvx and tfv represent the time to reach the arbitrary chosen target x2 for
different profiles. After rescaling, all the profiles start and end at the same
points. Similar plots can be drawn for concave-convex vs. convex profile.

We now consider the window size sampled at any arbitrary
random time over [0, tf ]. If we define by Ut the uniform
random variable distributed over [0, t], then the window size at
any arbitrary random time is given by Wf = f(Utf

). Note that
different choices of f give different distributions for f(Utf

).
We consider two increasing profiles f and g whose average
throughput over their inter-loss intervals remain the same, i.e.,

E{Wf} = E{f(Utf
)} = E{g(Utg )} = E{Wg}, (5)

where E{f(Utf
)} =

∫ tf

0
f(s)ds/tf (similarly for E{g(Utg )}).

The requirement of (5) is necessary to avoid trivialities. For
instance, for given x1 and x2, if we choose a profile f with
f(0) = x1 and f(t) = x2 for all t > 0 (i.e., it instantaneously
jumps to x2 and stays there), it would be “optimal” giving the
maximum throughput with the smallest variation. But, such a
choice is meaningless because of its dependency on the value
of x2. Instead, by enforcing constant E{Wf} for different
choices of f , we can find a better shape of profiles toward
a fixed, yet randomly chosen x2 satisfying (5) .

We next show that for any given f(t), the distribution of
f(Utf

) remains the same if we rescale f(t) to f(at) for any
arbitrary positive constant a.

Lemma 1: For any given increasing function f , we define
a collection of profiles Ωf = {f(at), a > 0}. Then, the
distribution of Wf for f ∈ Ωf does not depend on a. ¤

Without loss of generality, we can assume tf = 1 for
any given profile f by suitably rescaling f(t) if necessary.
In this case, P{Wf ≤ y} = f−1(y), i.e., the cumulative
distribution function of Wf is simply the inverse of the
‘rescaled’ increasing profile. We then obtain the following:

Proposition 1: For any given x1 < x2 and two increasing
profiles f and g such that E{Wf} = E{Wg}, let f̃ = f(a1t)
and g̃ = g(a2t) where a1 and a2 are chosen in such a way
that f̃(1) = g̃(1) = x2. If there exists t0 such that f̃(t) ≥ g̃(t)
for t<t0 and f̃(t) ≤ g̃(t) for t>t0, then Wf ≤cx Wg . ¤

Proposition 1 gives us a tool to compare any two different
profiles f and g satisfying (5) . To get more intuition, consider
the following three different sets of profiles: concave-convex,
convex, and concave profiles denoted by fvx, fx and fv ,
respectively. After suitably rescaling each profile, we can
assume that the inter-loss interval for (x1, x2) is always set
to [0, 1]. See Figure 2 for illustration.

From P{Wf ≤ y} = f̃−1(y), we can easily obtain the
probability density function (pdf) of window sizes by differ-
entiating the inverse of the rescaled profiles in Figure 2(b). As

x1 x2
 

 

concave−convex
convex
concave

Fig. 3. The probability density functions of concave-convex, convex,
and concave profiles. Under ‘fair’ comparison with the same throughput,
a concave-convex profile is least variable, as its probability mass is more
concentrated around the mean.

shown in Figure 3, the concave-convex type profile makes the
pdf more concentrated around the mean than the others. This
is expected as the concave-convex profile spends more time
in the middle between x1 and x2 while the pure concave or
convex makes the pdf lopsided.

IV. SIMULATION

In this section, we verify our theoretical results via NS-
2 simulation. Packet losses are generated by using various
cross traffic. This allows us to test the protocols under more
realistic Internet-like scenarios. In this section we consider
only a stationary loss process. We examine a non-stationary
process in Section V.

A. Protocols to be Simulated

In order to numerically verify our analytic results, we
consider several pseudo-protocols. Within a loss interval, a
pseudo-protocol sets its congestion window to f(t)+(1−β)w,
where t is the elapsed time since the last congestion epoch,
w is the window size just before the last congestion epoch,
and β is a decrease factor. We fix β to various values, but
in this paper, we report the results from β = 0.3. The other
values do not change our conclusion. We choose the following
five functions to represent the typical growth functions of
TCP variants : 1) Root function: f(t) = 300t0.5, 2) Concave-
Convex function: f(t) = 0.77((t− 8.87)3 + 8.873), 3) Linear
function: f(t) = 100t, 4) Power function: f(t) = 10t2, and
5) Exponential function: f(t) = 8t2e0.02t. The coefficients
of these functions are chosen such that they achieve similar
average window sizes around 1500–1900 packets. We chose
these average window sizes because it is simpler to find
coefficients giving similar window sizes for all these functions.

B. Packet Losses Generated by Background Traffic

We now consider a packet loss process induced by cross
traffic. We simulate a dumbbell network, where the bandwidth
and one-way delay of the bottleneck link are set to 250Mbps
and 50ms, respectively. The bottleneck router implements a
DropTail queue discipline and the router buffer size is set to
the bandwidth-delay product. To generate different background
traffic patterns, we consider two types of background traffic
with a different mix of web traffic, medium-size and long-lived
TCP traffic: 1) five long-lived forward TCP flows, two forward
web sessions, and some backward traffic; 2) 300 forward web
sessions, and some backward traffic. In both cases, the total
amount of forward background traffic is chosen to consume
about 20% of the total link bandwidth.
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Fig. 4. The CoVs of window sizes of the five pseudo-protocols when
competing with two types of background traffic. This simulation result closely
follows our analytic result.

We measure the CoV of congestion windows of all five
pseudo protocols. Figure 4 confirms that the five protocols
have approximately the same ordering as predicted by our
analytical result: Root ≤cx Linear ≤cx Power ≤cx Exponen-
tial, and Root ≤cx Concave-Convex ≤cx Exponential. Also
the ordering among the protocols is not changed even with
more variations of background traffic. One interesting finding
is that the CoV of Power is almost comparable to that of
Exponential. Otherwise it should have a smaller CoV than
Exponential. These two functions are very close to each other
until Exponential exceeds Power. So the packet losses induced
by cross traffic leave these two functions operate in an area
where the convexity of their growth functions are similar.

V. EXPERIMENTAL EVALUATION

In this section, we verify the relationship between the
window growth function and the second-order behavior of
existing high-speed TCP protocols using a Linux/FreeBsd
based dummynet testbed. We claim that the profiles of their
window growth functions strongly influence their second-
order behaviors and CoVs. All the experimental results and
their details can be found from the following web site:
http://netsrv.csc.ncsu.edu/convex-ordering/.

A. Experimental Setup

We use a dumbbell topology of dummynet routers where
each end-point consists of a set of Dell Linux servers dedi-
cated to high-speed TCP variant flows and background traffic.
Background traffic is generated by using a modification of a
web-traffic generator, called Surge [22] and Iperf. The RTT
of each background flow is set based on an exponential
distribution [23]. The same amount of background traffic is
pushed into forward and backward directions of the dumbbell.
The maximum bandwidth of the bottleneck router is set to 400
Mbps and a drop-tail queue discipline is used.

We test the following MD-style protocols: HSTCP [2],
HTCP [5]‡, STCP [3], CUBIC [7] and BIC [4]. All are
implemented in Linux 2.6.13. These protocols employ differ-
ent window growth functions with varying convexity. HSTCP
(Linear), HTCP (Power), and STCP (Exponential) use convex
functions and CUBIC and BIC use concave-convex functions.
Depending on the operating range of windows, protocols have
different degrees of convexity. CUBIC is much more concave
than BIC in our operating range and its behavior is close to

‡We applied the latest bug patch from the HTCP author.
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The darkline at the top means the total forward traffic rates. HTCP with the
lager CoV (0.21) shows severe loss synchronization and under-utilization,
while BIC shows a fairly good utilization with the smaller CoV (0.13).

a concave protocol. The experimental parameters we control
are RTT (40ms to 320ms) and buffer sizes (1MB to 8MB) in
the bottleneck link. The running time of each experiment is
from 10 to 20 minutes. We repeat each run at least five times
and report only average data from these runs.

B. Impact of RTTs

In this experiment, we fix the number of high-speed flows
to four and the buffer size to 1 Mbytes. In each experiment,
all the high-speed flows have the same RTT and we vary RTT
from 40ms to 320ms for different experiments. Figure 5 shows
the CoV of transmission rates of various protocols measured
at the bottleneck link for different RTT settings. Clearly, as
RTT increases, the transmission rates of protocols become
more variable. With larger window sizes and small router
buffers (1MB), we have more variations in transmission rates.
Unfortunately, however, these rate-variations (higher CoVs)
degrade the network utilization. Figure 6 shows the snapshots
of BIC and HTCP under 160 ms RTT. We clearly see HTCP
with the higher CoV (0.21) shows severe loss synchronization
and under-utilization in the bottleneck, while BIC shows a
fairly good utilization with the smaller CoV (0.13).
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Fig. 7. Impact of buffer size on CoV. As the buffer size increases, the
protocols become ‘less variable’. A clear separation between convex protocols
and concave-convex protocols is visible, independently of buffer sizes.

With 320ms RTT, we observe a clear separation between
convex protocols and concave-convex protocols. The convex
ordering among the protocols is still observed except for
HTCP. We can explain it as follows. HTCP adapts its window
by using its quadratic growth function as well as its estimation
of buffer size. The quadratic growth function dominates the
window size for large buffers. However, when the buffer
size is small, we find that HTCP increases and drops its
window very steeply even more than STCP which employs
an exponential growth function. We also find that CUBIC
performs slightly worse than BIC. Our analysis in Section III-
D can be applied to explain this behavior where concave-
convex protocols are shown to have smaller variance than pure
concave protocols under abrupt target changes. Since CUBIC
uses a more concave growth function than BIC (i.e., it stays
longer at the flat region than BIC), this argument makes sense.

C. Impact of Buffer Sizes

In this experiment, we fix the number of high-speed flows
to four and their RTTs to 320ms. Figure 7 shows the average
CoV of per-flow rates as we vary the router buffer size. As
the router buffer size increases, the CoV for all protocols
decreases because the buffer can provide ‘cushion’ for high
rate variation. BIC and CUBIC show the least difference while
HTCP gets improved the most. As we observed in the RTT
experiment, the performance of HTCP is strongly tied to the
router buffer size. When the buffer size increases, we observe
that the window growth tends to follow a quadratic function.
With large buffers (from 4MB to 8MB), the convex ordering
among protocols exactly follows our analytical result. Also, we
find clear separation between convex protocols and concave-
convex protocols, independently of buffer sizes.

VI. CONCLUSION

In this paper, we have examined the high-order behaviors of
MD-style protocols via the shape of window growth functions
using a powerful stochastic tool called convex ordering. It
shows that a protocol employing a window growth function
that starts off with a concave growth function and then later
switches to a convex growth function around the maximum
window size of the last congestion epoch, tends to give the
smallest rate variation. BIC and CUBIC are the congestion
control protocols that have this property. Our work is signifi-
cant because it provides a way to compare stochastically any
high-order properties of MD-style protocols. The comparison
is general enough so that it can be applied to any MD-protocols

that might have the same or different first-order behaviors
(e.g., different average throughput). In this paper, we study the
per-flow dynamics as it directly affects each user’s perceived
performance and possibly the degree of stability, but a more
in-depth study would involve the dynamics of aggregate flows
and their impact on the general health of the networks. We
leave that study as future work.
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