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Effect of Receive Buffer Size: An OS-based Perspective
Jerome White and David X. Wei
California Institute of Technology

Abstract— It is generally accepted that optimal TCP receive
buffer size is based on network conditions. We argue that process-
ing limitations at the end hosts should also be a consideration. We
present initial analysis as to the validity of this argument, noting
process-receive buffer dynamics and its affect on throughput.
Based on our observations, we offer suggestions as to how better
network performance can be achieved via optimized scheduling
from the operating system.

I. INTRODUCTION

Receive buffer size plays an important role in any TCP
connection. Through the advertised window [1], endpoints
calculate the amount of data they can send based primarily on
the size of this buffer; thus buffer size can be thought of as a
throttle within a connection. To an operating system, receive
buffers are the intermediate point between packet reception
and packet delivery. Their size, and how they are handled,
can have a major impact on TCP performance.

It is widely accepted that optimal receive buffer sizes should
be proportional in size to network round trip time (RTT).
Namely, that they be at least as large as the bandwidth-delay
product (BDP) of a connection. The intuition behind this rule-
of-thumb is that there is one RTT worth of delay between the
time when an advertised window is sent by the receiver and
the time when a new data packet arrives at the receiver. Hence,
the advertised window should be at least as large as BDP if
we want to fully utilize the available bandwidth. This cycle
has commonly been modeled with a control loop, as pictured
in Figure 1.

Research in previous years on receive buffer sizes only
considers the feedback loop between sender and receiver, as
the network is usually the bottleneck and receiver host usually
has sufficient CPU power to process the packets. From this
standpoint, as long as the rule-of-thumb is satisfied, the effects
of receive buffer sizes can be ignored since the receive buffer
will not be a bottleneck in the TCP connection.

As networks get faster and router technology advances
however, these intermediary aspects that were once bottlenecks
become less of a hindrance to data transfer. With the intro-
duction of very high speed networks, 10GE for example, it
is becoming more and more common that the host machines
are the connection bottlenecks, rather than the network. In
these scenarios, data is able to be delivered between sender
and receiver with very little loss and at very high throughput,
leaving the slowest “link” to be either the sender or the receiver
themselves. These types of connections are limited only by
their host machines’ ability to process data, which includes
packet reception.

This trend in network evolution motivates our research.
As the bottleneck changes to the end host machines, the
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Fig. 1. Established and widely accepted TCP control loop model. Its
limitation is that it does not adequately take the sender and receiver operating
systems into consideration. In this work, we concentrate our efforts on
monitoring the receiver and the effects its operating system can play.

interaction between TCP and the operating system becomes
very important. Connection and end host resources, such as
processor and memory utilization, need to be used properly
in order to maximize throughput. Our research focuses on the
role of the receive buffer as it pertains to OS and network
performance.

Looking at network performance from the vantage of the OS
is nothing new, however, doing so in the manner and with the
granularity that we do is. We analyze the relationship between
throughput and buffer size during the receiving processes ac-
tive timeslice. Our measurements offer explanation as to why,
from the standpoint of the receivers operating system, certain
buffer sizes are better than others. Ultimately, receive buffer
size should not only be a function of network conditions, such
as BDP, but of OS limitations as well—this work is a step in
that direction.

II. METHODOLOGY

In this study we monitored OS networking on a per process,
per cycle basis to identify buffer sizes which produced the
largest amount of bandwidth, known as optimal buffer sizes.
Often, when monitoring system behavior, samples are taken
at periodic time intervals; unfortunately, this method was
insufficient for the type of analysis we wanted to perform. For
this, fine granularity and an emphasis on process scheduling
were paramount.

A. Experimental Setup

The goal of our network setup was to isolate the receiving
operating system as the only bottleneck within the connection.
Our test bed consisted of a single sender and a single receiver
separated by zero hops. Both the sender and receiver contained
64-bit AMD processors—the sender having two processors
active, while the receiver only had one. Each machine had
two Ethernet interfaces: one connecting them to the Internet,
the other connecting the two machines directly. The direct
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connection, used for our tests, used Neterion Xframe II 10GbE
network interface cards. The I/O bus was a 64 bit 133MHz
PCIX(M1) and both machines ran Linux 2.6.13. When the
connection was otherwise idle, ping reported an average round
trip time of 0.031 ms. We used the sender to initiate multiple
simultaneous connections, allowing us emulate the case where
there are multiple upload clients connecting to a server. For
brevity and clarity, however, we present only single client
results unless multiple client results are significantly different.

Traffic for our tests was generated using iperf 1. We altered
the standard 2.0.2 version so that socket measurements could
be made (more on this in Subsection II-B). Using iperf, we
made comparisons not only as buffer size increased, but as
the number of parallel flows increased as well. We looked
primarily at buffer sizes between 4KB and 60MB. It has been
our experience that this range is small enough to observe
peaks in bandwidth, yet large enough to see trends that remain
consistent through very large (>100MB) buffer sizes.

Throughout our experiments, receive buffer size was set
via the /proc file system. Specifically, we were concerned
with the rmem default and tcp rmem variables. The
tcp moderate rcvbuf variable was always turned off.
The senders buffer was set in the same manner and always
at a size larger than the receive buffer to further help ensure
that the sender was not the bottleneck.

B. Implementation of Monitoring System

Socket monitoring works on a per-socket basis. When a
socket is created, monitoring of that socket is turned off
by default, allowing existing network applications to operate
normally. Monitoring is enabled by sending an SO MONITOR

option to the setsockopt system call. When specified, the
file management structure (files struct) of the owning
process is altered to contain a pointer to the open socket. These
changes allow the kernel to recognize that both the process
and socket require monitoring. Socket monitoring is turned off
through a similar call to setsockopt, and monitoring data
is accessed via the getsockopt system call. Providing the
SO MONITOR option to getsockopt copies monitoring data
structures from the kernel to the user. For socket monitoring
to be most effective, the option was always set immediately
after the a call to accept or connect, and prior to any
calls that transmitted data. Moreover, the option was always
set by the process performing the socket I/O.

Once a socket was marked for monitoring that socket had
its snapshot taken prior to the owning process beginning
execution, and again once execution was finished; that is,
on process activation and deactivation. We often refer to this
period as a “timeslice” or a “cycle.”2 Again, these socket and
scheduler changes were carried out within the Linux 2.6.13

1Maintained and distributed by the Distributed Applications Support Team
at the National Laboratory for Applied Network Research.

2It should be clarified that these terms are meant to describe the time that
a process is executing, not necessarily when it is running. In many operating
systems, including Linux, a process may be marked as running and even on
a run queue, but may not have the the CPU. We are primarily interested in
the time that a process is given CPU time, and our use of the terms timeslice,
active time, and cycle refer to such.
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Fig. 2. Resulting bandwidths at varying receive buffer sizes and simultaneous
flows. The vertical line near the y-axis represents the BDP based buffer
size, which was smaller than optimal. As buffer size increased (even beyond
0.5MB), bandwidth declined.

kernel. When set, socket monitoring decreased bandwidth by
approximately 3%.

III. EXPERIMENTATION AND OBSERVATION

Traditionally, calculating receive buffer size meant using
BDP as a lower bound and total available system resources
as an upper bound. This generally leaves a large range of
eligible buffer sizes. The relationship between bandwidth and
receive buffer size for our network can be seen in Figure 2. We
found BDP to underestimate correct buffer size by up to 9%,
yet setting the buffer to be significantly larger than this value
degraded performance. In general bandwidth declined by an
average of 655KB/sec for every 1MB increase in buffer size.
Our experiments sought to explain this buffer to bandwidth
relationship from the operating systems perspective.

A. Receive Buffer Dynamics

Receive buffer dynamics include statistics pertaining to the
receive buffer while its owning process is active. It encom-
passes two primary statistics: buffer fluctuation and actual
buffer size. Actual buffer size is the amount of data present on
the queue while the process is active. We call this the actual
buffer size because it can vary quite largely from what is set
in /proc.

Buffer fluctuation, Figure 3(a), reveals the amount of pro-
cessing that goes into the receive buffer while a task is active.
It is a measurement of the receive queue before and after the
receiving processes time slice. When a process becomes active,
we note the size of its receive queue. We subtract this value
from the size of the buffer at process deactivation, thereby
measuring the fluctuation of the buffer while the process was
active. Formally:

1
n

n∑
i=1

yi − xi (1)

where n is the number of timeslices, and xi and yi are
snapshots of the buffer size before and after, respectively, a
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(a) Receive buffer fluctuation during process active time. The
negative (sub-0) trend as buffer size increases is a result of more
data being taken off of the receive queue during the process active
time.
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(b) Actual receive buffer size during process active time. This
remains relatively stable regardless of set buffer size.

Fig. 3. Buffer size and buffer fluctuation with respect to bandwidth. Bandwidth is plotted against the left y-axis using a solid line; buffer statistics are against
the right y-axis using a dotted line.

given timeslice i. A positive value means data was added to the
queue during a timeslice, while a negative value corresponds
to data being removed.

At very small buffer sizes, including those that were opti-
mal, receive buffer fluctuation remained very close to zero.
At these buffer sizes, there is an equilibrium with respect
to the amount of data put on the queue and the amount of
data taken off during the process active time. It could be the
case that with small buffers, there is no data on the queue
at process activation and deactivation—that, from Equation 1,
yi − xi = 0. However, our research shows that this is not the
case (Figure 3(b)), that data is certainly present on the queue,
even at the smallest of buffer sizes. Maintaining this “process-
ability” is important to maintaining optimal bandwidth.

As buffer size increases, we see that both buffer fluctu-
ation, and bandwidth, decline. To blame one on the other
is somewhat counterintuitive: that removing data from the
queue at a higher frequency results in decreased bandwidth.
Our results show that at larger buffer sizes we are able to
process our buffer with greater efficiency, but doing so results
in sub-optimal bandwidth. It seems that although data is being
removed at increased buffer sizes, it is not doing so quickly
enough to maintain the bandwidth we see at smaller more
optimal buffer sizes. That is, from Equation 1, xi > yi for
almost all i ∈ n. This implies that there is a such thing as
too much received data—that although there is room on our
receive queue, it is not necessarily a good idea to try and fill
it. Too much data is really a disconnect between TCP and the
operating system. Although TCP can specify that the receiver
has room for more data, it does not take into account whether
or not that data can be processed. It is this disconnect that
creates the need for CPU load to be taken into account when
deciding receiver buffer size.

B. CPU Rate

To get a better idea of the relationship between the operating
system and the network, we measure the processes active rate,

or “CPU rate.” CPU rate is the average amount of time a
processes active period lasts. Measured in milliseconds per
timeslice, CPU rate is the sum of a processes active time
divided by the number of timeslices it was allotted. During a
network connection, there are several components within the
operating system that are competing for CPU resources. Mea-
suring CPU rate allows us to observe the interaction between
these components from the standpoint of the scheduler.

The general trend of CPU rate follows the bandwidth curve
very closely, as seen in Figure 4(b). Many of the local
maxima and minima in the bandwidth curves are mirrored
in their corresponding CPU rate curve. A more detailed look
at CPU rate with respect to optimal buffer sizes, Figure 4(a),
shows just how close the relationship is. When the number
of simultaneous connections is greater than 1, CPU rate is
maximized at buffer sizes corresponding to BDP. Thus, the
CPU rate metric can be a very good indicator of whether or
not a connection is attaining optimal bandwidth. By finding the
buffer size corresponding to maximized CPU rate, we know we
have reached a lower bound on “good” buffer sizes—to go any
lower will certainly yield sub-optimal network performance.

1) Process time and cycle count: We can better understand
our CPU rate observations by looking at the two components
that combine to form the measurement: CPU cycles and
CPU time. These components can be seen graphically in
Figures 5(a) and 5(b), respectively. As was defined earlier,
by “cycle” we mean a processes active period; not necessarily
when a process is in a run queue, but when it is actually
running. The number of cycles spent in the CPU declines as
set buffer size increases. Between buffer sizes of 4KB and
47KB (BDP), we see a decline in the number of cycles by
approximately 97% on average, varying with the number of
simultaneous flows. From BDP onward, the number of cycles
remains relatively stable, averaging a 1.5% decline regardless
of how large buffers are set to be. This suggests that at smaller
buffers processes are multiplexed at a higher frequency than
is required of larger buffers. At smaller buffer sizes, the queue
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(a) CPU rate at optimal buffer sizes. Maximums in CPU rate
and maximums in bandwidth correspond very closely. CPU rate
maxima in fact can be thought of as a lower bound on “good”
buffer sizes in much the same way BDP is.
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(b) CPU rate through large buffer sizes (general trend). This
follows bandwidth very closely.

Fig. 4. Aggregate bandwidth versus process active rate. Active rate can be thought of as the average duration of a processes active period. In each graph,
bandwidth is plotted along the left y-axis, while active-rate is along the right y-axis.

must be drained almost immediately to avoid filling up. It is
quite possible that the aggregate cost of these context switches
hinders application and system performance.

Cycle count turns out to be somewhat the inverse of
bandwidth. However, where bandwidth declines after its peak,
cycle count does not subsequently increase; rather, it remains
constant regardless of buffer size. Why cycle count bottoms
out like it does is still not clear, however one possibility is a
limitation in the system. More specifically, a (default) setting
in the scheduler that prevents processes from receiving too few
timeslices. Regardless, by keeping a lower bound on the cycle
count as buffer size increases, the system is in turn throttling
the bandwidth degradation experienced. It is quite possible that
bandwidth would decline at a much more rapid pace than is
observed if cycle count was allowed to decline unbounded.

The second factor in our CPU rate calculation is time. We
consider time to be the total amount of time a process spends
receiving data. This figure mirrors bandwidth very closely, as
can be seen in Figure 5(b). Receive time does not display the
absolute maximum that bandwidth does, however, as buffer
size increases, their declines are very similar. Thus, increased
buffer size does lead to less aggregate time spent in the proces-
sor, which is to be expected; however, it does not necessarily
mean better throughput. This is somewhat counterintuitive:
we would expect less time spent in the processor to mean
better performance overall. It could be the case that as buffer
size increases, the amount of time spent processing incoming
packets by the TCP sub-system also increases; something we
did not measure in this work. That, or memory management
is to blame, as an increase in the memory allotted is the only
remaining variable.

IV. TOWARD SYSTEM-BASED AUTO-TUNING

In an ideal system, new flows would calculate and offer
receive buffer sizes using current and past connection heuris-
tics. For example, keeping a record of typical connection
duration and average number of concurrent flows would prove

useful. Couple this information with known optimal buffer
sizes under these conditions and we have quite a knowledge
base with which to work from. Using this information, the
system could try and predict optimal buffer sizes required for
new connections. How much information to keep and which
approximation methods to use to achieve best case throughput
are grounds for future work.

Based on our results, the best case for maximizing through-
put from a system standpoint is to start by maximizing the
CPU rate of receiving processes. In the face of multiple
connections, this will give us a lower bound on the correct
receive buffer size. Calculating this maximization dynamically,
as connections are created, maintained, and terminated, is a
seemingly hard problem. An upper bound on optimal buffer
sizes can be calculated via buffer fluctuation. When fluctuation
begins to sway from zero (within a given threshold: 0±∆) we
have reached buffer sizes that are too large. Unfortunately, this
method leaves us within a range of good buffer sizes rather
than just one. Future work will include narrowing this range.

One very surprising result of our work is the fact that bigger
buffers are not necessarily better. It has been observed, in
fact, that they can even hinder performance. Thus, determining
buffer allocation automatically is not necessarily a recipe
for memory consumption. If done properly, system based
auto-tuning should recognize this fact, thereby automatically
creating its own upper bounded threshold.

Finally, creating optimal receive buffers cannot solely be
placed in the hands of the operating system; network param-
eters are still very necessary. We base the correctness of our
system measurements and alterations on a very fundamen-
tal network measurement: bandwidth. Thus, without network
statistics, we have no way of determining whether or not what
we are doing is correct. It should be emphasized that this
work is not intended to replace network based auto-tuning,
or even static-tuning methods. Rather, system parameters can
be used to complement statistics gathered from the network.
Our sole intent is to offer an alternative means to achieve best
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Fig. 5. CPU cycle count and active time as separate components. In each, bandwidth attained is plotted along the left y-axis, using a solid line; the
corresponding CPU statistic is plotted along the right y-axis using a dotted line. Each curve represents the aggregate of all clients.

case buffer sizes amidst network conditions that rendered RTT
based tuning methods sub-optimal.

V. RELATED WORK

Until recently static values were often used to control the
size of TCP buffers. These values were either hand tuned by
system administrators or left to the application to control.
Finding the optimal size meant either calculating BDP or
setting the value as large as system resources would allow.
Unfortunately, static-tuning can be prone to resource exhaus-
tion [2] and is not very robust to changing network topologies.
Finding ways to tune these buffers automatically has been the
goal of recent work.

Dunigan and others propose a daemon that modifies TCP
parameters for various open connections [3]. For a given event,
the daemon decides whether or not to modify certain parame-
ters of a connection. In order for the daemon to work properly,
it must periodically communicate with other remote daemons
to get a sense of bandwidth and latency characteristics between
end-points. Such added communication not only adds to the
traffic on the network, but requires both ends of a connection
to be running the daemon and modified kernel.

Semke, Mahdavi, and Mathis offered one of the earliest
kernel only solutions to auto-tuning [2]. In their work the
receive buffer is set to be as large as possible, limited only
by system wide TCP settings. They then use a combination
of congestion window and memory usage to determine the
optimal send buffer size. Their work inherently assumes that
the receiver can consume data at the same rate the network
delivers it. We are interested in situations where this is not the
case.

In contrast to Semke, Fisk and Feng propose an auto-
tuning solution that is throttled by the receiver. They call their
solution Dynamic Right-Sizing, or DRS [4]. DRS estimates
RTT by measuring the time it takes acknowledgments to be
sent and subsequent in-order packets to arrive and uses this
measurement to determine the receivers advertised window.
Heffner offers an improvement to DRS by calculating RTT

with the time stamp value found in most TCP headers [5].
He also decouples the retransmit and send queues, allowing
the retransmit queue to grow arbitrarily without limiting the
overall window size or performance.

Starting in the 2.4 kernel series, Linux included its own
auto-tuning implementation. While not completely docu-
mented, the general idea is centered around optimal use of
system memory. The kernel not only has the ability to allocate
buffers proportional to network properties, but also to re-
size buffers based on current memory conditions. We have
found kernel auto-tuning to have little affect, with a measured
bandwidth ratio between auto-tuning and non auto-tuning be
very close to one.

Weigle and Feng offer a comparison of various auto-tuning
methods in [6]. They look specifically at manual auto-tuning,
Linux 2.4 auto-tuning, and DRS. They also talk about other
auto-tuning methods and categorize each, something that had
not been done to that point.

The common thread amongst these auto-tuning methods is
their focus on network conditions to calculate optimal buffer
sizes. Efforts such as this are both adequate and efficient in
low speed networks. Our concern, rather, is on very high speed
networks, for which BDP calculations are not enough when
searching for optimal receive buffer sizes. In this environment,
the operating system should be considered.

Work that does have a heavier emphasis on the OS is that
of Feng and others. Their Rate Adaptive Protocol [7], [8]
allows conditions on receiver to be expressed to the sender via
explicit message passing on top of TCP and a simultaneous
UDP channel. We are not after a new protocol per-say, moreso
a new way for an unaltered TCP to operate. Their method of
predicting congestion is also a bit different from ours. Instead
of making predictions based on the dynamics of the receive
queue, they are trying to predict it based on whether or not
the receiving process is active.
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VI. CONCLUSION AND FUTURE WORK

We have looked at the role in which receive buffer size plays
on network performance. We have not only looked at how this
parameter affects throughput, but analyzed its relationship with
the operating system as well. In doing so we considered buffer
dynamics and CPU scheduling. As compared to optimal buffer
sizes, we conclude that small buffers require a significant
amount of context switches to process, while large buffers are
not given enough time per timeslice to be as effective.

We plan to extend our work in two directions. First we
would like to gain an even better understanding of how all
of the factors we have observed interact with one another.
This requires an even more thorough accounting of network
processing. We would like to continue to study receive dy-
namics, and even include similar studies of send dynamics as
well. To round out our observations, monitoring of the TCP
subsystem is required. This will help to strengthen our existing
conclusions and verify many of the hypothesis this work has
generated.

We would also like to experiment with different scheduling
policies in an effort to maximize CPU rate regardless of the
buffer size. We are confident that if this can be accomplished,
throughput will benefit. This leads to our overall goal of
implementing our system-based auto-tuning proposal into a
real system.
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