
Packet Reordering in High-Speed Networks and Its
Impact on High-Speed TCP Variants

Jie Feng, Zhipeng Ouyang, Lisong Xu, Byrav Ramamurthy
Computer Science and Engineering

University of Nebraska–Lincoln
Lincoln, NE 68588-0115

Email :{jfeng,zouyang,xu,byrav}@cse.unl.edu

Abstract— Several recent Internet measurement studies show
that the higher the packet sending rate, the higher the packet
reordering probability. This implies that recently proposed high-
speed TCP variants are more likely to experience packet reorder-
ing than regular TCP in high-speed networks, since they are
designed to achieve much higher throughput than regular TCP
in these networks. In this paper, we study the characteristics of
packet reordering in high-speed networks, and its impact on high-
speed TCP variants. In addition, we evaluate the effectiveness
of the existing reordering-tolerant TCP enhancements. Our
simulation results demonstrate that high-speed TCP variants
perform poorly in the presence of packet reordering, and
existing reordering-tolerant algorithms can significantly improve
the performance of high-speed TCP variants.

I. I NTRODUCTION

In the past few years a number of high-speed TCP variants,
such as HSTCP [8], STCP [13], BIC [22], and FAST [12], have
been proposed to address the under-utilization problem of TCP
in high-speed and long-distance networks. These high-speed
TCP variants modify the congestion avoidance algorithms [2]
of TCP to be more aggressive in high-speed networks, but they
still use the same fast retransmit and fast recovery algorithms
[2] as TCP, which enables TCP to detect and recover from
packet loss earlier than the timeout period. However, it is well
known [5], [18], [23] that the fast retransmit and fast recovery
algorithms of TCP may misinterpret packet reordering as
packet loss, and therefore TCP performs poorly in networks
with severe packet reordering. Consequently, high-speed TCP
variants using the same fast retransmit and fast recovery
algorithms may not achieve the expected high throughput
when packet reordering occurs.

Internet measurement results [7], [10] show that a small
percentage of TCP traffic experiences packet reordering, and
only very few reordered packets actually trigger TCP fast re-
transmit and fast recovery. This explains why TCP can achieve
a satisfactory performance in most cases. However, several
recent studies [9], [3], [20] demonstrate a strong correlation
between inter-packet spacing and packet reordering. Basically,
smaller inter-packet spacing may increase the probability of
packet reordering. This result implies that for the same packet
size, the higher the packet sending rate, the greater the
packet reordering probability. For example, a recent DARPA
SuperNet experiment [9] shows that a flow with a 1500-byte

packet size experiences significantly more reordered packets
when its sending rate is higher than 600Mbps. Since high-
speed TCP variants achieve much higher throughput than
regular TCP in high-speed networks, it ishighly likely that
they will experience more packet reordering than a regular
TCP in these networks.

While there is some debate [4] about whether packet re-
ordering is a pathological behavior of the Internet, and whether
this issue should be addressed by designing a reordering-
free network or by designing a reordering-tolerant TCP, this
paper focuses on characterizing packet reordering phenomenon
in high-speed networks, and its impact on recently proposed
high-speed TCP variants. In addition we evaluate the effective-
ness of the existing reordering-tolerant TCP enhancements.

The rest of this paper is organized as follows: Section II
briefly reviews the cause of packet reordering and its negative
impact on TCP. Section III describes a new packet-reordering
generator used in our simulation. Section IV presents the
characteristics of packet reordering in high-speed networks.
Section V discusses the simulation results of high-speed
TCP variants in networks with packet reordering. Section VI
discusses the effectiveness of the existing reordering-tolerant
TCP enhancement. Finally, section VII provides a conclusion.

II. BACKGROUND OFPACKET REORDERING

Packet reordering [15], [26] is a phenomenon in which
packets with higher sequence numbers are received earlier than
those with smaller sequence numbers. For example, a TCP
sender sequentially sends four packets:P1, P2, P3 and P4.
They may arrive at the TCP receiver in the following order:
P1, P3, P2 andP4, whereP2 is reordered.

Packet reordering can be caused by networks due to the
following two major reasons [4], [19], [23].First, due to
local parallelism within a packet router, which is a promis-
ing approach to build a high-speed and inexpensive packet
router. Second, due to load balancing among multiple links.
Multiple links with slightly different link delays may introduce
significant packet reordering.

TCP [5] attempts to distinguish packet reordering from
packet loss by using the number of dupACKs (duplicate
acknowledgements). An ACK is generated by a TCP receiver
to inform the TCP sender the next sequence number that it is

expecting to receive. Let us consider the above example: four
packets arrive at a TCP receiver in the following order:P1,
P3, P2 andP4. WhenP1 arrives, the receiver sends an ACK
to ask the next packet which isP2, but thenP3 arrives, which
indicates thatP2 is missing. Therefore, the receiver sends an
ACK for P2 again (This ACK is a dupACK). In this example,
the reordered packetP2 causes only one dupACK.

RFC 2581 [2] suggests that a TCP sender should consider
three or more dupACKs as an indication that a packet has
been lost, based on the assumption that a reordered packet
can trigger only one or two dupACKs. However, if a reordered
packet causes three or more dupACKs, TCP misinterprets it
as a lost packet. Consequently, TCP unnecessarily calls fast
retransmit (referred to asfalse fast retransmit[23]) to retrans-
mit the packet that seems to be lost, and unnecessarily calls
fast recovery to reduce the TCP sending rate. Therefore, TCP
performs poorly in networks with severe packet reordering.

III. PACKET REORDERINGMODELS

In this section, we present a new packet-reordering model,
which can be used to generate relatively realistic packet
reordering patterns, and more importantly, with which we can
study the impact of a specific property of packet reordering
on TCP performance.

A. Limitations of Current Packet-Reordering Models

Several methods have been proposed to simulate packet
reordering in previous studies. The models can be classified
into two categories and both categories have their own lim-
itations. One class of models reorders only one packet each
time by swapping two packets in a router queue [5], or by
using hiccup module [17]. However in practice, a block of
packets instead of one packet may be reordered at the same
time. The other class of models generates multiple reordered
packets each time by extending the NS-2 error model to delay
a configurable percentage of packets [23], or by changing
the link delay periodically [14]. Although these models can
generate more realistic reordered traffic, it is hard to isolate
the impact of a specific property of packet reordering on TCP
performance from that of other properties. IETF is currently
developing metrics [16], [11] to capture the occurrences and
characteristics of packet reordering in the Internet. However,
these metrics are more appropriate for describing packet
reordering experienced by a flow instead of generating packet
reordering.

B. Proposed Packet-Reordering Models

Considering the limitations of current packet-reordering
models, we propose a new packet-reordering generator that
is implemented by extending the error model in NS-2 [1].
The proposed packet-reordering generator models packet re-
ordering phenomenon with three parameters, and it enables us
to study the impact of each of the three parameters on the
performance of high-speed TCP variants.

Our packet-reordering generator can be described by the
following three parameters:

P8 P7 P6 P5 P4 P3 P2 P1

 TCP Sender TCP Receiver

Fig. 1. Original packet sequence without reordering

reordering block size = 1

 TCP Sender TCP Receiver

reordering delay time = 4 packets

P8 P7 P2 P6 P5 P4 P3 P1

Fig. 2. New packet sequence after packet 2 is reordered with reordering
block size = 1 and reordering delay time = 4 packets

reordering delay time = 4 packets

 TCP Sender TCP Receiver

P8 P3 P2 P7 P6 P5 P4 P1

reordering block size =2

Fig. 3. New packet sequence after packet 2 and 3 are reordered with
reordering block size = 2 and reordering delay time = 4 packets

• Reordering interval: the time interval between two con-
secutive packet-reordering events.

• Reordering delay time: the time interval from the first
reordered packet in a reordering event to the earliest
forwarded packet with a higher sequence number.

• Reordering block size: the number of packets being
reordered as an entity.

A packet-reordering generator works as a special router with
one input and one output port, and it forwards all incoming
packets to the outgoing port. To introduce packet reordering,
a reordering block sizenumber of packets are delayed for
a reordering delay timeevery reordering interval, which is
called a reordering event. All other packets are forwarded
immediately without any delay. All three parameters could be
random variables following certain distributions.

In this paper, we measure a reordering delay time in two
different units. Lett(Pi) denote the time that packetPi departs
from a generator. Suppose thatPx is the first reordered packet
in a reordering event, andPy is the earliest packet departing
from the generator among all packets with a higher sequence
number (i.e.,t(Py) < t(Px) and y> x). First, the reordering
delay time is measured as time intervalt(Py)−t(Px). Second,
it is measured as the number of packets forwarded between
t(Py) andt(Px). Note that we can determine one of these two
values from another one, if the packet sending rate is known
and assuming the same inter-arrival time for all packets. Both
units (i.e., seconds and packets) are used in this paper based
on which one is more convenient.

Figures 1 to 3 illustrate how our packet-reordering generator
works. Consider that eight packets are sent from a TCP sender
to a TCP receiver in the order shown in Figure 1, and they
arrive at a reordering generator back-to-back in that order.

20

 0.01

 0.1

 1

 10

 100 200 300 400 500 600 700 800 900

Re
or

de
rin

g
in

te
rv

al
 (S

ec
on

d)

Packet Sending Rate (Mbps)

Average

Fig. 4. The higher the packet sending rate, the shorter the average reordering
interval; that is, the more the reordering events

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

C
D

F

Reordering interval (Seconds)

Fig. 5. The cumulative distribution function (CDF) of the reordering intervals
in an experiment with a 900 Mbps rate

Assume that packetP2 is the first one to be reordered at the
beginning of a reordering interval. If the reordering block size
is one packet, and the reordering delay time is four packets,
then packetP2 is delayed until packetsP3 to P6 depart from
the generator. In this case, eight packets arrive at the TCP
receiver in the order shown in Figure 2. Now, we consider a
case where the reordering block size is two packets. In this
case, both packetsP2 and P3 are delayed, and eight packets
arrive at the TCP receiver in the order shown in Figure 3.

IV. CHARACTERISTICS OFPACKET-REORDERING IN

HIGH-SPEEDNETWORKS

Now, we study the characteristics of packet-reordering in
high-speed networks by using the new model. The reasonable
values for three parameters are found by analyzing the exper-
imental results conducted by Gharaiet al. [9] in 2004.

Gharaiet al. [9] measured the occurrence of packet reorder-
ing by transmitting UDP flows with various packet sizes for
one minute at a rate ranging from 1Mbps to 900Mbps among
Washington DC, Pittsburgh, and Los Angeles over DARPA
SuperNet. We analyze all their experiments, and observed
similar results for experiments with different packet sizes.
Limited by space, below we discuss and show our findings
only for experiments with a packet size of 1500 bytes.

Figure 4 shows the reordering interval that is averaged over
all reordering intervals in all experiments with a 1500-byte
packet size. It clearly shows that the higher the packet sending
rate, the shorter the reordering interval; that is the more
the reordering events. For example, the average reordering
intervals at 100Mbps is about 10 seconds, whereas that at
900Mbps is only about 0.02 seconds. This is consistent with
the observations in [9]. We also observe that even in the
same experiment, the reordering interval is not a constant.
For example, the cumulative distribution function (CDF) of
the reordering intervals in an experiment with a 900Mbps rate

 0

 1

 2

 3

 4

 5

 6

 7

 8

 100 200 300 400 500 600 700 800 900

R
eo

rd
er

in
g

D
el

ay
 T

im
e(

Pa
ck

et
s)

Packet Sending Rate (Mbps)

Average
Maximum

Fig. 6. Both average and maximum reordering delay times slightly increase
as the packet sending rate increases.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 100 200 300 400 500 600 700 800 900

R
eo

rd
er

in
g

Bl
oc

k
Si

ze
 (P

ac
ke

ts
)

Packet Sending Rate (Mbps)

Average
 Maximum

Fig. 7. Even though the average reordering block size remains almost same
for all sending rates, the maximum reordering block size increases as the rate
increases.

shown in Figure 5 indicates that the maximum and minimum
reordering intervals experienced by the same flow may differ
by more than 100 times. This suggests that previous simulation
results obtained with a fixed reordering interval may not reflect
the actual performance of TCP in the presence of packet
reordering.

Figure 6 shows the average and maximum reordering delay
times measured by first calculating the average and maximum
reordering delay times of each experiment, and then calculat-
ing the average among all experiments with the same sending
rate. We note that even through the results are obtained by
analyzing all experiment results conducted in [9], the plots are
uneven due to the limited number of experiments. However,
we can still see the pattern that both average and maximum
reordering delay times slightly increase as the packet sending
rate increases. For example, the average reordering delay time
at 100Mbps is only 1 packet, whereas that at 900Mbps is more
than 2 packets. In addition, in most cases, the average reorder-
ing delay time is less than 3 packets. That is, a significant
number of reordering events lead to less than three dupACKs,
and then do not trigger false fast retransmit. However, a high-
speed flow is more likely to experience reordering events
with a reordering delay time long enough to trigger false fast
retransmit.

Figure 7 shows the average and maximum reordering block
sizes. We note that the average reordering block size is
relatively insensitive to the packet sending rate, and it is always
very close to 1. That is, in most reordering events, only one
packet is reordered, even for a flow with a high sending rate.
We also clearly see that the maximum reordering block size
increases as the rate increases. This implies that it is more
likely for a larger number of packets to be reordered as an
entity for a flow with a higher sending rate.

21

reorder generator
S1

S2

Sn Dn

D2

 D1

R1 R2

Fig. 8. Simulation Network topology

V. I MPACT OF PACKET REORDERING ON THE

PERFORMANCE OFHIGH-SPEEDTCP VARIANTS

The impact of each of the three reordering parameters on
the performance of high-speed TCP variants is studied via
simulation. We only show the simulation results for BIC [22]
and HSTCP [8] in this section. Since all high-speed TCP
variants use the same TCP fast retransmit and fast recovery
algorithms, other high-speed TCP variants should achieve the
similar performance degradation trends as BIC and HSTCP.

A. Simulation Setup

Figure 8 shows the NS-2 simulation setup. The reordering
generator is introduced between high-speed TCP senderS1

and routerR1, so that only the TCP connection betweenS1

and D1 experiences packet reordering. The bandwidth and
one-way delay of the bottleneck link are set to 1000 Mbps
and 50 ms, respectively. Each source and sink are connected
to the bottleneck link through different access links with delays
randomly varied from 0.1 ms to 0.9 ms to mitigate the phase
effect. To increase traffic dynamics and further reduce phase
effect, various kinds of background traffic are simulated in
both directions.

The three parameters of the reordering generator are set
according to our analysis in section IV. Both the reordering
interval and reordering delay time are random variables with
a distribution approximately following their measured CDFs
respectively. Unless otherwise noted, the averages of the
reordering interval and reordering delay time are set to 0.02
seconds and 20µs, respectively, which correspond to their
measured average values at 900Mbps. The reordering block
size is set to a fixed value of 1 packet.

We use TCP/SACK as the agent for TCP connections
(except for reordering tolerant algorithms that need special
TCP agents). TCP/SACK is chosen for its higher performance
compared with TCP/Reno and TCP/NewReno, and the fact
that most of the reordering tolerant algorithms are based on
TCP/SACK.

B. Simulation Results

Figure 9 shows the impact of reordering intervals on the per-
formance of BIC and HSTCP. We vary the average reordering
interval from 0.01 seconds to 0.5 seconds, and set the other two
parameters to the values given in Section V-A. We make the
following three observations. First, as we expected, a smaller
reordering interval does lead to lower throughput. Second,
the throughput of BIC drops sharply when the reordering
interval is less than 0.02 seconds. This is because when

the reordering interval is small enough so that a flow may
experience more than one reordering event within one RTT, it
cannot efficiently recover from false fast retransmit and fast
recovery. Third, HSTCP suffers more than BIC from packet
reordering. For example, with a 0.5-second reordering interval,
BIC can achieve as high as 400Mbps throughput, however,
HSTCP can achieve only 10Mbps throughput. Intuitively, this
is because BIC is more aggressive than HSTCP in high-speed
networks.

Figure 10 evaluates the impact of reordering delay times.
We vary the average reordering delay time from 0 to 100
µs, and set the other two parameters to the values given in
Section V-A.First, we note that both BIC and HSTCP achieve
very high throughputs, when there is no packet reordering.
However, even a very small reordering delay time (such as 20
µs) can significantly degrade their throughput. This is because
the average reordering interval is set to 0.02 seconds (that
is the average reordering interval of all experiments with a
900Mbps rate conducted in [9]). As discussed in the last
paragraph, this interval is so small that a flow may experience
more than one reordering events within one RTT. With a
small reordering delay time, even though one reordering event
alone may not lead to false TCP fast retransmit, two or more
intermixed reordering events are more likely trigger false TCP
fast retransmit and fast recovery.Second, we see that further
increasing the reordering delay time only slightly reduces the
throughput. Intuitively, once false TCP fast retransmit and fast
recovery are triggered, a longer reordering delay time only
makes the flow stay in fast recovery slightly longer, which
does not change the throughput too much.

Figure 11 plots the throughputs of BIC and HSTCP for
different reordering block sizes. As we can see from the figure,
the impact of the reordering block size is very similar to that of
the reordering delay time. Even a small reordering block size
(such as one packet) can significantly degrade the throughput
of BIC and HSTCP. However, further increasing the reordering
block size only slightly reduces the throughput. The reason
is that the TCP/SACK mechanism can recover quickly from
multiple lost packets or reordered packets in one congestion
window unless the succeeding partial ACKs are triggered.

The simulation results shown in this section demonstrate
that all three reordering parameters negatively affect the per-
formance of high-speed TCP variants. When the reordering
interval is very small as measured in DARPA SuperNet
[9], high-speed TCP variants suffer significantly from packet
reordering even with very small reordering delay times and
block sizes.

VI. EFFECT OFEXISTING REORDERING-TOLERANT

ENHANCEMENTS OFTCP

A. Evaluation of Existing Reordering-Tolerant TCP Enhance-
ments

In this section, we evaluate the effectiveness of current
reordering-tolerant algorithms in high-speed networks. We
simulate TCP-NCR [24], AVG-DEV [14], and TCP-RR [23],
which are three recently proposed algorithms to make TCP

22

 1

 10

 100

 1000

 0.015625 0.03125 0.0625 0.125 0.25 0.5

Th
ro

ug
hp

ut
 (M

bp
s)

Reordering Interval (Seconds)

BIC
HSTCP

Fig. 9. The shorter the reordering interval, the lower the throughput of high-
speed TCP variants. BIC achieves better performance than HSTCP, but still
suffers from very small reordering intervals.

 1

 10

 100

 1000

 0 20 40 60 80 100

Th
ro

ug
hp

ut
 (M

bp
s)

Reordering Delay Time (µs)

BIC
HSTCP

Fig. 10. Even a small reordering delay time (such as 20µs) can significantly
degrade the throughput of BIC and HSTCP. However, further increasing the
reordering delay time only slightly reduces the throughput.

 1

 10

 100

 1000

 0 1 2 3 4

Th
ro

ug
hp

ut
 (M

bp
s)

Reordering Block Size(Packets)

BIC
HSTCP

Fig. 11. Even a small reordering block size (such as 1 packet) can
significantly degrade the throughput of BIC and HSTCP. However, further
increasing the reordering block size only slightly reduces the throughput.

more robust to packet reordering. They use slightly different
methods to prevent false TCP fast retransmit and fast recovery,
and their simulation results show that they work better than
other similar reordering-tolerant algorithms in their studied
simulation environments.

We have obtained similar simulation results for both BIC
and HSTCP, and below we show the results for BIC only.
We simulate BIC with each of these reordering-tolerant algo-
rithms, and evaluate their effectiveness as we vary each of the
three reordering parameters of our reordering generator. We
use the same sets of simulation parameters as in Figures 9, 10
and 11.

Figures 12, 13 and 14 show the effectiveness of these three
reordering-tolerant algorithms as we vary the reordering inter-
val, reordering delay time, and reordering block size. We also
show the throughput of BIC without any reordering-tolerant
algorithm (referred to as BIC-SACK in figures) as a reference
case. We make the following three observations.First, all
reordering-tolerant algorithms can significantly improve the
throughput of BIC in all simulation scenarios. For example,
BIC-SACK achieves less than 10Mbps throughput in most
cases, whereas BIC with any of TCP-NCR, AVG-DEV, and

 1

 10

 100

 1000

 0.015625 0.03125 0.0625 0.125 0.25 0.5

Th
ro

ug
hp

ut
 (M

bp
s)

Reordering Interval (Seconds)

BIC with TCP-NCR
BIC with AVG-DEV

BIC with TCP-RR
BIC with SACK

Fig. 12. Existing reordering-tolerant algorithms can significantly improve the
throughput of BIC. However, BIC still suffers from packet reordering with
small reordering intervals

 1

 10

 100

 1000

 0 20 40 60 80 100

Th
ro

ug
hp

ut
 (M

bp
s)

Reordering Delay Time (µs)

BIC with TCP-NCR
BIC with AVG-DEV

BIC with TCP-RR
BIC with SACK

Fig. 13. Existing reordering-tolerant algorithms can significantly improve
the throughput of BIC. BIC can achieve very high throughput even with long
reordering delay times.

 1

 10

 100

 1000

 0 1 2 3 4

Th
ro

ug
hp

ut
 (M

bp
s)

Reordering Block Size (Packets)

BIC with TCP-NCR
BIC with AVG-DEV

BIC with TCP-RR
BIC with SACK

Fig. 14. Existing reordering-tolerant algorithms can significantly improve the
throughput of BIC. However, BIC still suffers from packet reordering with
large reordering block sizes

TCP-RR achieves a rate greater than 100Mbps in all cases.
Second, TCP-NCR consistently performs better than the other
two algorithms: AVG-DEV and TCP-RR. This is expected,
since TCP-NCR has the largestdupthresh(i.e., the number
of dupACKs to trigger TCP fast retransmit and recovery) and
the virtual layer.Third, even with TCP-NCR, BIC still suffers
from packet reordering, especially with small reordering in-
tervals and large reordering block sizes. For example, Figure
14 shows that BIC with TCP-NCR achieves only 463Mbps
throughput with a reordering block size of 2 packets, whereas
it achieves 632Mbps throughput with a reordering block size
of 1 packet. Intuitively, even though TCP-NCR can effectively
prevent most false TCP fast retransmit and recovery due to
packet reordering only, it cannot recover quickly from TCP
fast retransmit and recovery caused by packet loss and packet
reordering.

B. Related Reordering-Tolerant TCP Enhancements

Most reordering-tolerant algorithms increase thedupthresh
from the default value of 3 to a larger number to prevent
false TCP fast retransmit and recovery. Blanton and Allman
[5] adjust dupthreshusing reordering history based on D-
SACK information [27]. TCP-RR [23] proposed by Zhang

23

et al. uses D-SACK and a cost function of timeout and
false fast retransmission to adjustdupthresh. AVG-DEV [14]
developed by Ma and Leung adjustsdupthreshby considering
both the average and the deviation of reordering history. TCP-
NCR [24] designed by Bhandarkaret al. setsdupthreshto
approximately the size of a congestion window. TCP-Aix [25]
recently proposed by Ekström et al. adjustsdupthresh, and it
separates loss recovery from congestion control.

Some algorithms, such as TCP-PR [6] proposed by Blhacek
et al., use a time threshold based on RTT estimation to trigger
TCP fast retransmit and recovery, instead of the number of
dupACKs. Some algorithms, such as RN-TCP [21] developed
by Sathiaseelan and Radzik, require additional information
from routers to distinguish packet reordering from packet
loss. A more comprehensive survey of reordering-tolerant
algorithms can be found in [26].

VII. C ONCLUSION

In this paper, we presented a new packet-reordering gener-
ator which can be described by three parameters: reordering
interval, reordering delay time, and reordering block size. The
new reordering generator enables us to study the impact of
each of these three parameters on the performance of high-
speed TCP variants. We also analyzed the experiment results
measured in DARPA SuperNet [9]. Our analysis result is
consistent with the findings in [9] that the average reordering
interval decreases as the packet sending rate increases. We
also find that the reordering delay time and reordering block
size slightly increases as the packet sending rate increases. All
of these analysis results imply that a TCP flow with a high
sending rate is more likely to experience more false TCP fast
retransmit and recovery due to packet reordering.

We also performed NS-2 simulation to study the perfor-
mance of high-speed TCP variants in the presence of packet
reordering. Our simulation results demonstrate that all three
reordering parameters negatively affect the performance of
high-speed TCP variants. When the reordering interval is
very small as measured in DARPA SuperNet, high-speed TCP
variants suffer significantly from packet reordering even with
very small reordering delay times and block sizes.

Finally, we evaluated the effectiveness of the existing
reordering-tolerant TCP enhancements. Our simulation results
show that current reordering-tolerant algorithms can signifi-
cantly improve the performance of high-speed TCP variants.

ACKNOWLEDGMENTS

We would like to thank Dr. Ladan Gharai, Dr. Colin Perkins
and Dr. Tom Lehman for sharing their experimental results
with us. The work reported in this paper is supported in part
by a Grant-in-Aid from UNL Research Council and Nebraska
EPSCoR First Award.

REFERENCES

[1] Network simulator 2,http://www.isi.edu/nsnam/ns/.
[2] G. M. Allman, V. Paxson and W. Stevens, ”TCP Congestion Control”,

RFC 2581, April 1999.

[3] J. Bellardo and S. Savage, ”Measuring packet reordering”ACM SIG-
COMM Internet Measurement Workshop, Marselle, France, November
2002, pp. 97 - 105.

[4] J. Bennett and C. Partridge and N. Shectman, ”Packet reordering is not
pathological network behavior”IEEE/ACM Transaction on Networking,
7(6):789–798, December 1999.

[5] E. Blanton and M. Allman, ”Using TCP DSACKs and SCTP Duplicate
TSNs to Detect Spurious Retransmissions”,RFC 3708, February 2004.

[6] S. Bohacek, J. Hespanha, J. Lee, C. Lim, and K. Obraczka, ”TCP-
PR: TCP for Persistent Packet Reordering”23rd IEEE International
Conference on Distributed Computing Systems (ICDCS’03), May 2003,
pp. 222 - 231.

[7] S. Dharmapurikar and V. Paxson, ”Robust TCP stream reassembly in the
presence of adversaries”,14th USENIX Security Symposium, Baltimore,
MD, August 2005, pp. 222 - 231.

[8] S. Floyd, ”HighSpeed TCP for Large Congestion Windows”,RFC 3649,
December 2003.

[9] L. Gharai, C. Perkins, and T. Lehman, ”Packet reordering, high speed
networks and transport protocol performance”,In Proceeding of the 13th
ICCCN, Chicago, IL, October 2004, pp. 73- 78.

[10] S. Jaiswal, G. Iannaccone, C. Diot, J. Kurose, and D. Towsley, ”Mea-
surement and Classification of Out-of-Sequence Packets in a Tier-1
Backbone”,IEEE Infocom 2003, San Francisco, CA, March 2003, pp.
1199- 1209.

[11] A. Jayasumana, N. Piratla, A. Bare, T. Banka, R. Whitner, and J.
McCollom, ”Reorder Density and Reorder Buffer-occupancy Density
Metrics for Packet Reordering Measurements”,Internet Draft, 2006.

[12] C. Jin and D. Wei and S. Low, ”FAST TCP: Motivation, Architecture,
Algorithms, Performance”,In Proceedings of IEEE INFOCOM, Hong
Kong, March 2004.

[13] T. Kelly, ”Scalable TCP: Improving Performance in HighSpeed Wide
Area Networks”,ACM SIGCOMM Computer Communication Review,
33(2):83 - 91, April 2003.

[14] C. Ma and K. Leung, ”Improving TCP robustness under reordering
network environment”,In Proceedings of Global Telecommunications
Conference, November 2004.

[15] J. Mogul, ”Observing TCP dynamics in real networks”.In Proceedings
of ACM SIGCOMM, Baltimore, MD, August 1992.

[16] A. Morton, L. Ciavattone, G. Ramachandran, S. Shalunov and J. Perser,
”Packet Reordering Metric for IPPM ”.Internet Draft, 2006.

[17] G. Neglia, V. Falletta and G. Bianchi, ”Is TCP packet reordering always
harmful?”, In Proceeding of MASCOTS, October 2004.

[18] V. Paxson, ”End-to-end internet packet dynamics”,IEEE/ACM Transac-
tions on Networkings, 7(3): 277 -292, June 1999.

[19] N. Piratla and A. Jayasumana, ”Reordering of packets due to multipath
forwarding - an analysis”,In Proceedings of IEEE ICC, Istanbul, Turkey,
June 2006, pp. 28 - 36.

[20] M. Przybylski, B. Belter, and A. Binczewski, ”Shall we worry about
packet reordering?”,In Proceedings of TERENA Networking Conference,
Poznan, Poland, June 2005, pp. 28 - 36.

[21] A. Sathiaseelan and T. Radzik, ”Reorder Notifying TCP (RN-TCP) with
explicit packet drop notification”,International Journal of Communica-
tion Systems, 19(6): 659 - 678, August 2006.

[22] L. Xu, K. Harfoush, and I. Rhee, ”Binary increase congestion control
for fast long-distance networks”,In Proceedings of IEEE INFOCOM,
Hong Kong, March 2004.

[23] M. Zhang, B. Karp, S. Floyd, and L. Peterson, ”RR-TCP: A reordering
robust TCP with DSACK”. In Proceedings of IEEE ICNP, Atlanta,
Georgia, November 2003.

[24] S. Bhandarkar, A. L. N. Reddy, M. Allman, E. Blanton, ”Improving
the Robustness of TCP to Non-Congestion Events”,RFC 4653, August
2006.

[25] S. Landstr̈om, H. Ekstr̈om, L. Larzon and R. Ludwig, ”TCP-Aix: making
TCP robust to reordering and delay variations”,Research Report in
Luléa University of Technology, 2006.

[26] K.-C. Leung, V. O. K. Li and D. Yang, ”An Overview of Packet Re-
ordering in Transmission Control Protocol (TCP): Problems, Solutions,
and Challenges”,IEEE Transactions on Parallel and Distributed Systems
(IEEE TPDS), 2006.

[27] S. Floyd, J. Mahdavi, M. Mathis and M. Podolsky, ”An Extension to
the Selective Acknowledgement (SACK) Option for TCP”,RFC 2883,
July 2000.

24

