
 43

Abstract—For a long time, operating system designers have
followed the recommendation of the IETF for TCP congestion
control. Recently, this has changed: the Linux kernel uses BIC-
TCP by default since June 2004, and Compound TCP is going
to be a part of Microsoft Windows Vista, where it is likely to be
enabled by default. This raises concerns about the future of
congestion control in the Internet and the role of the IETF in
this context. Simulation results indicate that there is indeed a
reason to be concerned, as TCP flows of the above mentioned
current and future operating systems appear to exhibit
significant fairness problems when they share the same
network.

I. INTRODUCTION
N the 1980s, Internet users experienced a phenomenon
that was later referred to as a global “congestion collapse”
- all of a sudden, end-to-end throughput was drastically

reduced despite the continuous increase of connectivity.
This problem was solved by introducing congestion control
in TCP, and the change was documented in a SIGCOMM
paper that became a seminal piece of Internet literature [1].

The increased use of multimedia in the Internet led to
some concern about UDP based applications: with UDP,
implementing congestion control is up to the programmer of
the application, and this is a difficult task which will not
necessarily lead to a performance improvement for the
application itself. From the selfish perspective of a single
sender and receiver, congestion control can sometimes even
degrade the performance (in terms of raw throughput)
perceived by an end system. On the other hand, it has been
shown that even a single unresponsive flow can cause
severe harm to a large number of responsive flows [2], and,
because TCP plays a major role for the Internet, the term
“TCP-friendliness” (also called “TCP-compatibility”) was
coined. In order to maintain the stability of the Internet, it
was said that flows should be TCP-friendly, which means
that, in steady state, they must not use more bandwidth than
a conforming TCP running under comparable conditions
[3].

This led the research community to focus on two distinct
topics for a while:
1. TCP-friendly congestion control for multimedia

applications, where a smoother rate is desirable
2. better-than-TCP congestion control, where the

bandwidth is probed in a more aggressive fashion in

1 This work was funded by the Tyrolean Science Fund.

order to make better use of links with a high
bandwidth-delay product; the congestion control
mechanisms in this category would not work well for
the Internet because they would cause harm to
competing TCP flows.

A large number of proposals were made in both fields for
a couple of years. Regarding real use of these mechanisms
in the Internet, there is reason to believe that we will see
representatives of the first category in practice in the near
future because the IETF has recently standardized the
DCCP protocol; DCCP enables multimedia application
programmers to make use of smooth yet TCP-friendly
congestion control without having to implement this
function within their applications [4].

As for the second category, the behavior of these
mechanisms contradicts the very idea of TCP-friendliness,
which has been regarded as the cornerstone of stability in
the Internet for a long time. While we do not claim to know
the exact historical progression of things, in our impression,
it was HighSpeed TCP that opened the door to the
possibility of sometimes being somewhat more aggressive
than TCP. Consider this quote from the HighSpeed TCP
specification, RFC 3649 [5]:

“Because HighSpeed TCP's modified response function
would only take effect with higher congestion windows,
HighSpeed TCP does not modify TCP behavior in
environments with heavy congestion, and therefore does
not introduce any new dangers of congestion collapse.”

It is this reasoning that was embedded in the design of

BIC (Figure 8 in [6]) and Compound TCP (“By employing
the delay-based component, CTCP can gracefully reduce the
sending rate when the link is fully utilized. In this way, a
CTCP flow will not cause more self-induced packet losses
than a standard TCP flow, and therefore maintains fairness
to other competing regular TCP flows.”) [7], two of the
three mechanisms that this paper focuses on. The third
mechanism, CUBIC, the successor of BIC, implicitly
includes this reasoning, as it was shown to be more TCP-
friendly than BIC in all circumstances [8, 10].

II. THE PROBLEM
Directly after the sentence quoted above, RFC 3649

continues as follows:

“However, if relative fairness between HighSpeed TCP
connections is to be preserved, then in our view any

Linux beats Windows! – or the Worrying
Evolution of TCP in Common Operating

Systems1
Kashif Munir, Michael Welzl, Dragana Damjanovic

Institute of Computer Science, University of Innsbruck, Austria

I

 44

modification to the TCP response function should be
addressed in the IETF, rather than made as ad hoc
decisions by individual implementors or TCP senders.”

The IETF failed to follow this advice in time. While TCP

gradually evolved within the IETF, no drastic departure
from its original congestion control mechanism was made.
In the meantime, link capacities have grown, pronouncing
the deficiencies of TCP and creating a demand for better
congestion control. As a result, operating system developers
have in the meantime made “ad hoc decisions”: starting in
kernel version 2.6.7, which was released in June 2004, BIC
TCP was included in Linux, and enabled as the default
mechanism - approximately three months after a major press
release related to this mechanism. There are indications that
upcoming kernels will use CUBIC, and Microsoft Windows
Vista will use CTCP [7, 11].

Despite the fact that none of these mechanisms can be
expected to endanger the stability of the Internet, the impact
of one mechanism onto another is important even when
there is no significant congestion, as it allows us to learn
about the performance of real systems that are connected to
the Internet today (or will be connected to it in the near
future). In the next sections, we will therefore look at some
simulations that involve BIC, CUBIC, CTCP and standard
TCP. In order to give more meaning to these mechanisms,
we would like to ask the reader to think “Linux” when
reading “BIC”, “possibly future Linux” when reading
“CUBIC”, “possibly Microsoft Windows Vista” when
reading “CTCP”, and think about any other operating
system when reading “TCP”. Note that our intention is to
merely discuss the relative fairness of these mechanisms
when they share a bottleneck; for an in-depth study of these
and other congestion control schemes, please refer to [10,
12].

III. SIMULATIONS AND DISCUSSION
Fig. 1 shows the dumbbell network configuration that is

used for the simulation with ns-2 [13].

Fig. 1. Dumbbell Topology

The dumbbell topology is widely used for network

simulations. Its aim is to represent a set of connections
sharing the same bottleneck. We have used it to analyze
how concurrent heterogeneous flows may affect the
throughput of one another.

For the simulation the bottleneck capacity is 1Gbps and
the bottleneck delay is set to 48ms. Drop Tail routers are
used. The buffer size of the bottleneck link is set to 100% of
Bandwidth-Delay Product. The packet size is set to 1500
bytes. The simulation runs for 1200 seconds. The ns-2 TCP-
Linux implementation is used for the simulation [9].

Fig. 2 shows results of the NS simulation of 20 BIC, 20
CUBIC, 20 CTCP and 20 NewReno flows. We did not use
TCP SACK because the Linux TCP implementation for ns-2
that we used did not include it, yet can be expected to more
closely model the behavior of a real Linux implementation
[9], and we believe that the difference between SACK and
NewReno would not have a major impact on our results as
multiple losses from a single sender window are unlikely in
our simulation scenario.

We observe that the CWND curves get smooth after
about 50 seconds of simulation. The BIC flows get a major
part of the total bottleneck capacity by stealing it from
CUBIC, CTCP and NewReno flows. The BIC flows stay
aggressive throughout the simulation. We observe that BIC
and CUBIC flows in the network immediately reduce the
congestion windows of CTCP and NewReno flows. It is
interesting to note that in the presence of BIC and CUBIC
flows the CTCP flows do not behave any better than the
standard TCP flows and in fact both CTCP and NewReno
behave almost identically. We question whether this
behavior will be acceptable for the future Internet with the
release of Microsoft’s Windows Vista which might be using
CTCP when Linux is using BIC or CUBIC.

CUBIC, BIC, CTCP, New Reno

0

2000

4000

6000

8000

10000

12000

14000

16000

0 200 400 600 800 1000
Time (Seconds)

C
on

ge
st

io
n

W
in

do
w

CUBIC
BIC
CTCP
NewReno

Fig. 2. Congestion window curves for CUBIC, BIC, CTCP
and NewReno flows. A congestion window curve represents
the sum of 20 flows of a type

Table 1 shows the average transfer rate as well as the
average bottleneck link utilization per mechanism over the
simulation time. From the numerical results it is clear that
there are serious fairness problems due to the interaction of
the heterogeneous flows. The BIC flows behave
aggressively as they get a major share of the bottleneck
capacity. As CUBIC is designed to be less aggressive and
more TCP-friendly than BIC, the link utilization of CUBIC
flows is almost five times less than BIC flows. The link
capacity utilization of CTCP and NewReno flows is almost
identical.

Table 1: Average transfer rates and average link utilization

Mechanism Average Transfer
Rate (Mbs)

Average Link
Utilization (%)

CUBIC 151.11 15.11
BIC 764.42 76.42

CTCP 27.80 2.78
NewReno 26.59 2.66

 45

IV. RELATED WORK
Due to the wealth of in-depth performance studies of

high-speed TCP mechanisms that were published, we shed
some light on the “aggression” (the potential to adversely
interact with other flows) of some of these mechanisms by
providing an overview of related work instead of describing
our own simulation results.

The studies that we considered generally fit in two
categories. In one category, flows of each high-speed TCP
were separately tested without mixing them up with flows of
any other high-speed TCP variant. In the other category,
flows of two high-speed TCP variants were tested against
each other. In most cases of both categories flows were also
tested with regular TCP flows. A dumbbell network
topology was used for simulations.

A. One High-speed Mechanism
In [14] experiments were done to measure the average

throughputs as the propagation delay of the first flow was
held constant and that of the second flow was varied from
16ms to 320ms. Measurements were taken for a range of
link bandwidths and propagation delays of the first flow; the
queue was sized as a constant proportion of the bandwidth-
delay product. The measurements were restricted to long-
lived TCP flows operating in drop-tail environments. An
evaluation of the performance of STCP, HSTCP, BIC TCP,
FAST TCP and HTCP was presented. The tests showed that
STCP and FAST TCP exhibit substantial unfairness.

In [15] each experiment was run for 300 seconds. CTCP,
HSTCP and Standard TCP were evaluated. Four regular
TCP, four HSTCP flows and four CTCP flows were run
separately. When packet loss was high (> 0.01), all three
protocols behaved exactly the same. However, with the
decrease of packet loss rate, HSTCP and CTCP could use
the bandwidth more effectively. CTCP had slightly higher
throughput than HSTCP. According to the authors, the
reasons were twofold: 1) CTCP’s response function is
slightly more aggressive than HSTCP in a moderate window
range; and 2) CTCP introduces much less self-induced loss
due to its delay-based nature.

It was shown that CTCP and HSTCP could effectively
recover from packet losses caused by burst background
traffic and achieved high link utilization.

To check TCP friendliness, eight regular TCP flows were
run as baseline. Then, four flows were replaced with the
high speed protocols and the experiments were repeated
under the same conditions. The throughputs of regular TCP
flows were compared with and without the presence of high
speed protocols. Bandwidth stolen from TCP flows was
calculated in each experiment. The results showed that
HSTCP caused around 60% throughput reduction of regular
TCP, while the throughput reduction caused by CTCP was
around 10%.

In [16] the performance of FAST TCP was compared
with Reno, HSTCP, STCP, and BIC TCP using their default
parameters. In the experiments the bottleneck capacity was
800Mbps and the maximum buffer size was 2000 packets.
The results showed that FAST had the best performance of
all the protocols for three evaluation criteria of fairness,
stability and responsiveness. It had the second best overall
throughput after BIC TCP. STCP showed worse intra
protocol fairness compared with TCP Reno, while both BIC
TCP and HSTCP achieved comparable intra-protocol

fairness to Reno. HSTCP, BIC TCP and STCP showed
increased oscillations compared with Reno and the
oscillations became worse as the number of sources
increased.

Different fairness issues were also seen in [17] where the
effect of reverse traffic on various TCP stacks was studied.
TCP NewReno, Sack, BIC TCP, HSTCP, HTCP, STCP,
FAST TCP and Westwood+ TCP were analyzed. The
bottleneck capacity was set to 250 Mbps. The bottleneck
buffer was set to the bandwidth-delay product. The packet
size was 1500 bytes. When the RTT was 40ms, and when
reverse traffic was active, FAST TCP yielded the best link
utilization of 90% whereas HTCP yielded the worst link
utilization of 78%. When the RTT was 160ms, and when the
reverse traffic was active, the highest link utilization was
achieved by SACK TCP whereas FAST TCP achieved the
lowest link utilization which was about 60% of the available
bandwidth. Among other protocols, BIC obtained 92% link
utilization, followed by STCP, Westwood+, HSTCP and
HTCP in the order. It was mentioned that, except for FAST
TCP, all new TCP mechanisms provided goodputs
comparable to those of standard TCP SACK but with larger
packet drop rates.

Another scenario with reverse traffic + background web
traffic (with standard TCP) for 40 ms RTT and 160 ms RTT
was studied. It was noticed that, in the presence of
background Web traffic, the congestion windows of HTCP,
HSTCP, BIC and STCP dropped to one several times
because of timeout expirations. For an RTT of 160 ms, the
congestion windows of the two forward connections of
STCP were significantly different, which showed that the
fairness was poor. SACK and Westwood+ were not affected
by reverse traffic and timeout events were quite infrequent.
FAST TCP flows were not affected by timeout events;
however it was stated that they did not share the bandwidth
fairly. For FAST, when reverse traffic was active, the two
congestion windows converged to the same value and the
congestion windows oscillated frequently.

In [18] the high-speed TCP variants BIC TCP, CUBIC,
FAST, HSTCP, HTCP and STCP were evaluated in the
presence of background traffic. The bandwidth of the
bottleneck link was configured to be 400 Mbps. The buffer
size of the bottleneck link was fixed to the maximum of 2
Mbytes. The long-lived and short-lived background flows
were generated by TCP and their transmission rates were
elastic to the amount of traffic in the network to the extent
limited by the maximum allowed by 64KB receiver buffer
size. When one high-speed TCP flow was run with one flow
of TCP-SACK both having same RTTs, then even with
background traffic the utilization of HTCP, FAST and
STCP with RTTs of 160 and 324ms was significantly lower
than that of the other protocols. It was mentioned that the
problem was related to the inherent protocol behavior of
HTCP in the way that HTCP ties its window reduction to
the estimated buffer size of the network. The results showed
STCP as simply too aggressive. For FAST, its behavior
became less predictable in the presence of background
traffic due to noise in the RTT estimation.

For TCP friendliness experiments were run with one
high-speed TCP flow and one regular TCP flow with the
same RTT (varied from 16ms to 324ms) over the same
bottleneck link with and without background traffic. TCP-
friendliness was measured with Jain’s fairness index [19]. It

 46

was observed that HTCP had the best TCP-friendliness in
very low RTT networks with or without background traffic.
However, as RTT increased beyond 16ms, HTCP’s fairness
to TCP dropped rapidly in both cases. In general it was
noted that all TCP variants except FAST improved their
TCP-friendliness when background traffic was added to the
experiments. This was mostly because of two reasons. First,
increased background traffic took away bandwidth from
high speed TCP variants, so they became less aggressive as
their average window sizes became smaller than without
background traffic. The other reason was that with
background traffic, randomness in packet losses increased.
HSTCP, CUBIC and BIC improved their TCP fairness quite
considerably with background traffic. It was observed that
FAST showed the best TCP friendliness in high RTT
networks.

In [20] the buffer size was set equal to 200-500 packets as
are suggested values for buffers in Cisco Systems router
[21]. According to the authors TCP-Libra showed more
friendliness to TCP NewReno than Vegas, Cubic, and Hybla
coexisting with TCP NewReno.

In [22] the Performance of STCP, HSTCP, BIC TCP,
FAST TCP and HTCP was evaluated. The ratio of
throughputs of two flows under symmetric conditions (same
propagation delay, shared bottleneck link, same congestion
control algorithm) was measured, as the path propagation
delay was varied from 16ms to 320ms. Results were shown
for 10 Mbps and 250 Mbps bottleneck bandwidths. The
bottleneck queue size was 20% BDP. It was observed that,
while Standard TCP and HTCP were essentially fair (the
competing flows achieve, to within 5%, the same average
throughput) under these conditions, STCP and FAST TCP
were notably unfair. HSTCP and BIC TCP were also
mentioned to exhibit significant unfairness but to a smaller
degree than Scalable-TCP and FAST TCP.

B. Mixed High-speed Mechanisms
In [23] two different protocols were tested at a time and

the need of a standard for high-speed TCPs was stressed. An
evaluation study of competing high-speed TCP flows was
done where one flow entered a network in which another
high-speed flow had already reached its maximum data rate.
The fairest result would be for the existing flow to give half
of its bandwidth to the new flow in order to allow both
flows to evenly share the link. The results showed that in
most cases this did not happen, but rather one high-speed
flow dominated the other. HSTCP, STCP, FAST, HTCP,
BIC TCP and CUBIC were studied in a network with a 622
Mbps bottleneck and 100 ms RTT. The maximum router
queue buffer length of 100% of the BDP, 20% of the BDP
and 40 packets were used.

For a 20% BDP router queue buffer, Intra protocol
fairness suffered when competing flows were started at
different times. STCP was too aggressive in obtaining
throughput from other high-speed flows and most of the
high-speed protocols were not fair when competing with
other high-speed protocols. To ensure that the TCP window
size was not a limiting factor, each TCP connection had a
maximum window size of 67000 segments, which was
about 64 MB. Each simulation was run for 500 seconds. For
each protocol a set of six experiments was run with a
maximum queue buffer size. Within each set, flow 1 used
the same protocol and flow 2 used a different one of the six

protocols. With a router queue buffer length of 40 packets,
utilization suffered, with many pairs of flows together
obtaining less than 50% of the total link capacity. A queue
buffer length of 100% BDP provided the best link
utilization, but may be realistic for real networks. With a
20% BDP queue buffer length, all experiments had a total
link utilization of 99%-100%.

For the remainder of the experiments a queue buffer
length of 20% BDP was used. Of all the results, the pairing
of HTCP and BIC TCP when HTCP started first gave the
best fairness results. When the order of the protocols was
reversed, the behavior was much less fair, with BIC TCP
controlling most of the throughput. Since FAST is a delay-
based protocol, as the queuing delay increases, FAST
adjusts its window either by increasing more slowly than
before, or by decreasing, depending on the degree of the
increase in the queuing delay. Of all the experiments, the
experiments involving one STCP flow showed very poor
fairness results. It was shown that STCP was quite
aggressive in obtaining and keeping bandwidth even when
competing with another STCP flow. FAST improved its
intra-protocol fairness performance when both flows started
at the same time. The starting time of flows also had an
affect on BIC TCP. When BIC TCP and either HSTCP or
HTCP started at the same time, BIC TCP increased its
window aggressively and did not let other flows fairly share
the bandwidth.

In [24] only two different protocols were tested at a time.
In the experiments flows were started at the same time. New
Reno TCP was compared with Parallel TCP Reno (P-TCP),
STCP, FAST TCP, HSTCP, HighSpeed TCP Low Priority
(HSTCP-LP), BIC TCP and HTCP. The analysis compared
and reported on the stacks in terms of achievable
throughput, impact on RTT, intra and inter-protocol fairness
and stability. Experiments were done for 20 minutes for
small RTT network of 10 ms, medium RTT network of 70
ms and high RTT network of 170 seconds. The bottleneck
capacity for most of the tests was set to 622 Mbps. For
inter-protocol fairness, two different flows were sent on the
link from two different machines. On the short RTT
network, it was shown that P-TCP behaved very aggressive.
Only BIC TCP was sufficiently aggressive to compete with
P-TCP, but it appeared too aggressive for the other
protocols. The results showed that STCP, which was very
aggressive on the short RTT network, became quite gentle
on the high RTT network. On the other hand, HTCP, which
was gentle in the small and the medium RTT networks,
became aggressive for the high RTT network. HSTCP was
too gentle in the tests.

In [25] High-speed transport protocols – HSTCP, STCP,
FAST, CUBIC, HTCP and UDT – were also evaluated by
mixing two of the mechanisms at a time.

Bottleneck bandwidth of 1 Gbps was used. The default
value of 127 packets was mainly used as the output buffer
size. A large buffer size of 512 packets was also used to see
the impact of buffer size. Every high speed transport
protocol flow achieved a high throughput near to 1 Gbps.

In an experiment using buffer size of 127 packets and
then buffer size of 512 packets, a large difference in their
throughput characteristics of FAST and Scalable TCP flows
was observed. The throughput of FAST flow was greatly
improved by increasing the buffer size at the edge routers
larger. When the buffer size was set to 127 packets, losses

 47

of packets were observed with FAST, while no packet
losses occurred with FAST when the buffer size was 512
packets. On the other hand, the throughput of Scalable TCP
seemed unstable with a larger buffer size in edge routers. In
one experiment Linux was adopted as the sender side OS
and FreeBSD (ver.5.3) and Windows XP (SP2) were
adopted as receiver side OS. It was observed that all
protocols (except for standard TCP) achieved high
throughput regardless of the kind of receiver side OS. That
is the majority of users on the Internet were ready to fill up
the bandwidth up to 1 Gbps as receivers if the sender had
employed such the high-speed protocols. It was mentioned
that while every high-speed transport protocol flow
eventually achieved a high throughput near to 1 Gbps, the
throughput in the case of the XP receiver increased more
slowly compared with the cases of Linux and FreeBSD
receivers. In addition, Standard TCP flows in the case of XP
achieved higher throughput than in the cases of Linux and
FreeBSD.

Co-existence of a high-speed transport protocol and a
long-lived Standard TCP was also examined in [25]. It was
observed that a high speed transport protocol flow starved
the long-lived Standard TCP flow, and the performance of
the high speed transport protocol was merely degraded. An
experiment was done to examine the throughput
characteristics when two of the high-speed transport
protocol flows co-existed in the path. It was found that the
link utilization degraded when different kinds of high-speed
transport protocols flows coexisted.

Experiments were also done to examine the co-existence
of short-lived TCP flows with a high-speed transport
protocol flow. The performance of the high-speed transport
protocol flow was considerably affected by the coexisting
short-lived TCP flows, even though the amount of these
flows was small. The larger the averaged file size of the
short-lived TCP flow was, the larger the observed damage
in the high-speed transport protocol flow became, except for
UDT. The UDT flow was also affected by coexisting short-
lived TCP flow, but its degree of degradation was relatively
small. The results indicated that coexisting short-lived
standard TCP flows could considerably damage the
performance of high-speed TCP-based transport protocol
flows although coexisting long-lived standard TCP flows
could not so. Setting the buffer size at the bottleneck nodes
larger could decrease the degradation of throughput of both
high-speed TCP and short-lived TCP flows.

V. CONCLUSION
Our simulation work indicates that, in the regime of little

congestion, Linux (with kernel version 2.6.7 or higher) will
perform better than Microsoft Windows if systems of both
type share the same network. This is not to say that CTCP
could not outperform BIC or CUBIC in isolation in some
circumstances – it is the mixture that we are worried about,
and that this paper addresses. Our review of related work
has shown that this problem does not only concern BIC,
CUBIC, CTCP and standard TCP – numerous fairness
issues exist among many other high-speed TCP variants.

These results leave us with a number of open questions
regarding the practical application of congestion control in
current operating systems. For instance, should Linux make

the choice of congestion control application dependent by
using BIC for transfers of large files only and CUBIC for
everything else? Will the more aggressive behavior (which
translates into better performance for the user) of BIC and
CUBIC (as opposed to standard TCP and CTCP) cause
more users to switch from Microsoft Windows to Linux?
Will people be disappointed with the network performance
of Microsoft Windows Vista as they compare these systems
in the same network and at the same time? And, most
disturbingly, could such a development lead to some sort of
an “arms race” for more aggressive congestion control
mechanisms in the long run? We have seen that there is still
headroom: STCP is an example of a mechanism which is
more aggressive than most other protocols in many cases.

We believe that these are serious concerns, and that it is
high time for the IETF to act. A new congestion control
framework should be specified, and this framework should
be beneficial for the Internet as a whole, and in line with
incentives of users – that is, it should be advantageous for a
single end user as well as an operating system designer to
follow the recommendation. To this end, we believe that the
new framework could either follow the conservative path of
CTCP (which may be an overly prudent decision, as single
users will see better performance with a more aggressive
scheme when traffic is mixed) or specify a congestion
control behavior that is more aggressive than standard TCP,
yet designed in a way that preserves the stability of the
Internet.

In our opinion, this new framework should replace the
notion of TCP-friendliness. But what could such a
framework look like? Could the recommendation simply be
that (and note that this is a tongue-in-cheek statement) new
mechanisms should, for instance, be “CUBIC-friendly”?

REFERENCES
[1] Jacobson, V., Karels, M. J., “Congestion Avoidance and Control”, In

Proceedings of ACM SIGCOMM '88, Stanford, CA, August 1988.
[2] Sally Floyd, Kevin R. Fall, “Promoting the use of end-to-end

congestion control in the internet,” IEEE/ACM Transactions on
Networking, 7(4):458--472, 1999.

[3] B. Braden, D. Clark, J. Crowcroft, B. Davie, S. Deering, D. Estrin, S.
Floyd, V. Jacobson, G. Minshall, C. Partridge, L. Peterson, K.
Ramakrishnan, S. Shenker, J. Wroclawski, L. Zhang,
“Recommendations on Queue Management and Congestion
Avoidance in the Internet,” April 1998, RFC 2309.

[4] E. Kohler, M. Handley, S. Floyd, “Datagram Congestion Control
Protocol (DCCP),” March 2006, RFC 4340.

[5] Sally Floyd, “HighSpeed TCP for Large Congestion Windows,”
December 2003. RFC 3649.

[6] L. Xu, K. Harfoush, and I. Rhee, “Binary Increase Congestion Control
(BIC) for Fast Long-Distance Networks,” In Proceedings of IEEE
INFOCOM 2004, March 2004

[7] K. Tan, J. Song, Q. Zhang, and M. Sridharan, “Compound TCP: A
Scalable and TCP-friendly Congestion Control for High-speed
Networks”, in 4th International Workshop on Protocols for Fast Long-
Distance Networks (PFLDnet), 2006, Nara, Japan.

[8] I. Rhee, L. Xu, “CUBIC: A New TCP-Friendly High-Speed TCP
Variant, “In Proceedings of Third International Workshop on
Protocols for Fast Long-Distance Networks (PFLDnet), February
2005, Lyon, France.

[9] David X. Wei and Pei Cao, “NS-2 TCP-Linux: An NS-2 TCP
Implementation with Congestion Control Algorithms from Linux”, to
appear in Proceedings of ValueTool'06 -- Workshop of NS-2, Oct,
2006

[10] Sangtae Ha, Long Le, Injong Rhee and Lisong Xu, “A Step Toward
Realistic Evaluation of High-Speed TCP Variants,” in The 4th
International Workshop on Protocols for Fast Long-Distance
Networks (PFLDnet), February 2006, Nara Japan.

 48

[11] http://www.microsoft.com/technet/community/columns/cableguy/cg1
105.mspx#EAD

[12] Li, Y.T., Leith, D. J., Even, B., “Evaluating the Performance of TCP
Stacks for High-Speed Networks”, Proc. PFLDnet, Feb. 2006, Nara,
Japan.

[13] The Network Simulator – ns-2. URL: http://www.isi.edu/nsnam/ns/.
[14] Yee-Ting Li, Douglas Leith, and Robert Shorten, “Experimental

Evaluation of TCP Protocols for High-Speed Networks”, Technical
report, Hamilton Institute, 2005.

[15] Kun Tan, Jingmin Song, Qian Zhang, “A Compound TCP Approach
for Fast Long Distance Networks”, Microsoft Technical Report, 2005.

[16] C. Jin, D. Wei, S. Low, “FAST TCP: Motivation, Architecture,
Algorithms, Performance”, In Proc IEEE Infocom 2004.

[17] S. Mascolo, F. Vacirca, ''The effect of reverse traffic on TCP
congestion control algorithms,'' in Proc. of Protocols for Fast Long-
Distance Networks, Feb. 2006, Nara, Japan.

[18] Sangtae Ha, Yusung Kim, Long Le, Injong Rhee, Lisong Xu, “A Step
toward Realistic Performance Evaluation of High-Speed TCP
Variants”, PFLDnet 2006, Nara, Japan.

[19] D. Chiu and R. Jain. “Analysis of the Increase/Decrease Algorithms
for Congestion Avoidance in Computer Networks.” Journal of
Computer Networks and ISDN, 17(1):1-14, 1989.

[20] G. Marfia, C. Palazzi, G. Pau, M. Gerla, M. Sanadidi and M. Roccetti,
“TCP-Libra: Exploring RTT Fairness for TCP”, IEEE Journal on
Selected Areas in Communications Special Issue on Non Linear
Optimization of Communication Systems, Sept. 2005. A.K.A. UCLA
Computer Science Department Technical Report # UCLA-CSD TR-
050037

[21] C.S. Inc Buffer tuning for all Cisco routers – documented id: 15091.
Available: http://www.cisco.com/warp/public/63/buffertuning.html.

[22] B.Even, Y.Li, D.J.Leith, “Evaluating the Performance of TCP Stacks
for High-Speed Networks”, PFLDnet 2006, Nara, Japan.

[23] Michele C. Weigle, Pankaj Sharma, Jesse R. Freeman IV,
“Performance of Competing High-Speed TCP Flows”, Networking
2006: 476-487.

[24] Hadrien Bullot, R. Les Cottrell, Richard Hughes-Jones, “Evaluation of
Advanced TCP Stacks on Fast Long-Distance Production Networks”,
J. Grid Comput. 1(4): 345-359 (2003).

[25] K. Kumazoe, K. Kouyama, Y. Hori, M. Tsuru, Y. Oie, “Can high-
speed transport protocols be deployed on the Internet? : Evaluation
through experiments on JGNII”, PFLDnet 2006, Nara, Japan.

