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Abstract—For a long time, operating system designers have 
followed the recommendation of the IETF for TCP congestion 
control. Recently, this has changed: the Linux kernel uses BIC-
TCP by default since June 2004, and Compound TCP is going 
to be a part of Microsoft Windows Vista, where it is likely to be 
enabled by default. This raises concerns about the future of 
congestion control in the Internet and the role of the IETF in 
this context. Simulation results indicate that there is indeed a 
reason to be concerned, as TCP flows of the above mentioned 
current and future operating systems appear to exhibit 
significant fairness problems when they share the same 
network. 
 

I. INTRODUCTION 
N the 1980s, Internet users experienced a phenomenon 
that was later referred to as a global “congestion collapse” 
- all of a sudden, end-to-end throughput was drastically 

reduced despite the continuous increase of connectivity. 
This problem was solved by introducing congestion control 
in TCP, and the change was documented in a SIGCOMM 
paper that became a seminal piece of Internet literature [1]. 

The increased use of multimedia in the Internet led to 
some concern about UDP based applications: with UDP, 
implementing congestion control is up to the programmer of 
the application, and this is a difficult task which will not 
necessarily lead to a performance improvement for the 
application itself. From the selfish perspective of a single 
sender and receiver, congestion control can sometimes even 
degrade the performance (in terms of raw throughput) 
perceived by an end system. On the other hand, it has been 
shown that even a single unresponsive flow can cause 
severe harm to a large number of responsive flows [2], and, 
because TCP plays a major role for the Internet, the term 
“TCP-friendliness” (also called “TCP-compatibility”) was 
coined. In order to maintain the stability of the Internet, it 
was said that flows should be TCP-friendly, which means 
that, in steady state, they must not use more bandwidth than 
a conforming TCP running under comparable conditions 
[3]. 

This led the research community to focus on two distinct 
topics for a while:  
1. TCP-friendly congestion control for multimedia 

applications, where a smoother rate is desirable 
2. better-than-TCP congestion control, where the 

bandwidth is probed in a more aggressive fashion in 

 
 
1 This work was funded by the Tyrolean Science Fund. 

order to make better use of links with a high 
bandwidth-delay product; the congestion control 
mechanisms in this category would not work well for 
the Internet because they would cause harm to 
competing TCP flows. 

A large number of proposals were made in both fields for 
a couple of years. Regarding real use of these mechanisms 
in the Internet, there is reason to believe that we will see 
representatives of the first category in practice in the near 
future because the IETF has recently standardized the 
DCCP protocol; DCCP enables multimedia application 
programmers to make use of smooth yet TCP-friendly 
congestion control without having to implement this 
function within their applications [4]. 

As for the second category, the behavior of these 
mechanisms contradicts the very idea of TCP-friendliness, 
which has been regarded as the cornerstone of stability in 
the Internet for a long time. While we do not claim to know 
the exact historical progression of things, in our impression, 
it was HighSpeed TCP that opened the door to the 
possibility of sometimes being somewhat more aggressive 
than TCP. Consider this quote from the HighSpeed TCP 
specification, RFC 3649 [5]: 
 

“Because HighSpeed TCP's modified response function 
would only take effect with higher congestion windows, 
HighSpeed TCP does not modify TCP behavior in 
environments with heavy congestion, and therefore does 
not introduce any new dangers of congestion collapse.” 
 
It is this reasoning that was embedded in the design of 

BIC (Figure 8 in [6]) and Compound TCP (“By employing 
the delay-based component, CTCP can gracefully reduce the 
sending rate when the link is fully utilized. In this way, a 
CTCP flow will not cause more self-induced packet losses 
than a standard TCP flow, and therefore maintains fairness 
to other competing regular TCP flows.”) [7], two of the 
three mechanisms that this paper focuses on. The third 
mechanism, CUBIC, the successor of BIC, implicitly 
includes this reasoning, as it was shown to be more TCP-
friendly than BIC in all circumstances [8, 10]. 

 

II. THE PROBLEM 
Directly after the sentence quoted above, RFC 3649 

continues as follows: 
 

“However, if relative fairness between HighSpeed TCP 
connections is to be preserved, then in our view any 
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modification to the TCP response function should be 
addressed in the IETF, rather than made as ad hoc 
decisions by individual implementors or TCP senders.” 

 
The IETF failed to follow this advice in time. While TCP 

gradually evolved within the IETF, no drastic departure 
from its original congestion control mechanism was made. 
In the meantime, link capacities have grown, pronouncing 
the deficiencies of TCP and creating a demand for better 
congestion control. As a result, operating system developers 
have in the meantime made “ad hoc decisions”: starting in 
kernel version 2.6.7, which was released in June 2004, BIC 
TCP was included in Linux, and enabled as the default 
mechanism - approximately three months after a major press 
release related to this mechanism. There are indications that 
upcoming kernels will use CUBIC, and Microsoft Windows 
Vista will use CTCP [7, 11]. 

Despite the fact that none of these mechanisms can be 
expected to endanger the stability of the Internet, the impact 
of one mechanism onto another is important even when 
there is no significant congestion, as it allows us to learn 
about the performance of real systems that are connected to 
the Internet today (or will be connected to it in the near 
future). In the next sections, we will therefore look at some 
simulations that involve BIC, CUBIC, CTCP and standard 
TCP. In order to give more meaning to these mechanisms, 
we would like to ask the reader to think “Linux” when 
reading “BIC”, “possibly future Linux” when reading 
“CUBIC”, “possibly Microsoft Windows Vista” when 
reading “CTCP”, and think about any other operating 
system when reading “TCP”. Note that our intention is to 
merely discuss the relative fairness of these mechanisms 
when they share a bottleneck; for an in-depth study of these 
and other congestion control schemes, please refer to [10, 
12]. 

 

III. SIMULATIONS AND DISCUSSION 
Fig. 1 shows the dumbbell network configuration that is 

used for the simulation with ns-2 [13].  
 

 
 

Fig. 1. Dumbbell Topology 
 
The dumbbell topology is widely used for network 

simulations. Its aim is to represent a set of connections 
sharing the same bottleneck. We have used it to analyze 
how concurrent heterogeneous flows may affect the 
throughput of one another.  

For the simulation the bottleneck capacity is 1Gbps and 
the bottleneck delay is set to 48ms. Drop Tail routers are 
used. The buffer size of the bottleneck link is set to 100% of 
Bandwidth-Delay Product. The packet size is set to 1500 
bytes. The simulation runs for 1200 seconds. The ns-2 TCP-
Linux implementation is used for the simulation [9]. 

Fig. 2 shows results of the NS simulation of 20 BIC, 20 
CUBIC, 20 CTCP and 20 NewReno flows. We did not use 
TCP SACK because the Linux TCP implementation for ns-2 
that we used did not include it, yet can be expected to more 
closely model the behavior of a real Linux implementation 
[9], and we believe that the difference between SACK and 
NewReno would not have a major impact on our results as 
multiple losses from a single sender window are unlikely in 
our simulation scenario. 

We observe that the CWND curves get smooth after 
about 50 seconds of simulation. The BIC flows get a major 
part of the total bottleneck capacity by stealing it from 
CUBIC, CTCP and NewReno flows. The BIC flows stay 
aggressive throughout the simulation. We observe that BIC 
and CUBIC flows in the network immediately reduce the 
congestion windows of CTCP and NewReno flows. It is 
interesting to note that in the presence of BIC and CUBIC 
flows the CTCP flows do not behave any better than the 
standard TCP flows and in fact both CTCP and NewReno 
behave almost identically. We question whether this 
behavior will be acceptable for the future Internet with the 
release of Microsoft’s Windows Vista which might be using 
CTCP when Linux is using BIC or CUBIC. 
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Fig. 2.  Congestion window curves for CUBIC, BIC, CTCP 
and NewReno flows. A congestion window curve represents 
the sum of 20 flows of a type 
 
Table 1 shows the average transfer rate as well as the 
average bottleneck link utilization per mechanism over the 
simulation time. From the numerical results it is clear that 
there are serious fairness problems due to the interaction of 
the heterogeneous flows. The BIC flows behave 
aggressively as they get a major share of the bottleneck 
capacity. As CUBIC is designed to be less aggressive and 
more TCP-friendly than BIC, the link utilization of CUBIC 
flows is almost five times less than BIC flows. The link 
capacity utilization of CTCP and NewReno flows is almost 
identical. 
 
Table 1:  Average transfer rates and average link utilization  

Mechanism Average Transfer 
Rate (Mbs) 

Average Link 
Utilization (%) 

CUBIC 151.11 15.11 
BIC 764.42 76.42 

CTCP 27.80 2.78 
NewReno 26.59 2.66 
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IV. RELATED WORK 
Due to the wealth of in-depth performance studies of 

high-speed TCP mechanisms that were published, we shed 
some light on the “aggression” (the potential to adversely 
interact with other flows) of some of these mechanisms by 
providing an overview of related work instead of describing 
our own simulation results.  

The studies that we considered generally fit in two 
categories. In one category, flows of each high-speed TCP 
were separately tested without mixing them up with flows of 
any other high-speed TCP variant. In the other category, 
flows of two high-speed TCP variants were tested against 
each other. In most cases of both categories flows were also 
tested with regular TCP flows. A dumbbell network 
topology was used for simulations. 

A. One High-speed Mechanism 
In [14] experiments were done to measure the average 

throughputs as the propagation delay of the first flow was 
held constant and that of the second flow was varied from 
16ms to 320ms. Measurements were taken for a range of 
link bandwidths and propagation delays of the first flow; the 
queue was sized as a constant proportion of the bandwidth-
delay product. The measurements were restricted to long-
lived TCP flows operating in drop-tail environments. An 
evaluation of the performance of STCP, HSTCP, BIC TCP, 
FAST TCP and HTCP was presented. The tests showed that 
STCP and FAST TCP exhibit substantial unfairness.  

In [15] each experiment was run for 300 seconds. CTCP, 
HSTCP and Standard TCP were evaluated. Four regular 
TCP, four HSTCP flows and four CTCP flows were run 
separately. When packet loss was high (> 0.01), all three 
protocols behaved exactly the same. However, with the 
decrease of packet loss rate, HSTCP and CTCP could use 
the bandwidth more effectively. CTCP had slightly higher 
throughput than HSTCP. According to the authors, the 
reasons were twofold: 1) CTCP’s response function is 
slightly more aggressive than HSTCP in a moderate window 
range; and 2) CTCP introduces much less self-induced loss 
due to its delay-based nature.  

It was shown that CTCP and HSTCP could effectively 
recover from packet losses caused by burst background 
traffic and achieved high link utilization.  

To check TCP friendliness, eight regular TCP flows were 
run as baseline. Then, four flows were replaced with the 
high speed protocols and the experiments were repeated 
under the same conditions. The throughputs of regular TCP 
flows were compared with and without the presence of high 
speed protocols. Bandwidth stolen from TCP flows was 
calculated in each experiment. The results showed that 
HSTCP caused around 60% throughput reduction of regular 
TCP, while the throughput reduction caused by CTCP was 
around 10%.  

In [16] the performance of FAST TCP was compared 
with Reno, HSTCP, STCP, and BIC TCP using their default 
parameters. In the experiments the bottleneck capacity was 
800Mbps and the maximum buffer size was 2000 packets. 
The results showed that FAST had the best performance of 
all the protocols for three evaluation criteria of fairness, 
stability and responsiveness. It had the second best overall 
throughput after BIC TCP. STCP showed worse intra 
protocol fairness compared with TCP Reno, while both BIC 
TCP and HSTCP achieved comparable intra-protocol 

fairness to Reno. HSTCP, BIC TCP and STCP showed 
increased oscillations compared with Reno and the 
oscillations became worse as the number of sources 
increased.  

Different fairness issues were also seen in [17] where the 
effect of reverse traffic on various TCP stacks was studied. 
TCP NewReno, Sack, BIC TCP, HSTCP, HTCP, STCP, 
FAST TCP and Westwood+ TCP were analyzed. The 
bottleneck capacity was set to 250 Mbps. The bottleneck 
buffer was set to the bandwidth-delay product. The packet 
size was 1500 bytes. When the RTT was 40ms, and when 
reverse traffic was active, FAST TCP yielded the best link 
utilization of 90% whereas HTCP yielded the worst link 
utilization of 78%. When the RTT was 160ms, and when the 
reverse traffic was active, the highest link utilization was 
achieved by SACK TCP whereas FAST TCP achieved the 
lowest link utilization which was about 60% of the available 
bandwidth. Among other protocols, BIC obtained 92% link 
utilization, followed by STCP, Westwood+, HSTCP and 
HTCP in the order. It was mentioned that, except for FAST 
TCP, all new TCP mechanisms provided goodputs 
comparable to those of standard TCP SACK but with larger 
packet drop rates.  

Another scenario with reverse traffic + background web 
traffic (with standard TCP) for 40 ms RTT and 160 ms RTT 
was studied. It was noticed that, in the presence of 
background Web traffic, the congestion windows of HTCP, 
HSTCP, BIC and STCP dropped to one several times 
because of timeout expirations. For an RTT of 160 ms, the 
congestion windows of the two forward connections of 
STCP were significantly different, which showed that the 
fairness was poor. SACK and Westwood+ were not affected 
by reverse traffic and timeout events were quite infrequent. 
FAST TCP flows were not affected by timeout events; 
however it was stated that they did not share the bandwidth 
fairly. For FAST, when reverse traffic was active, the two 
congestion windows converged to the same value and the 
congestion windows oscillated frequently.  

In [18] the high-speed TCP variants BIC TCP, CUBIC, 
FAST, HSTCP, HTCP and STCP were evaluated in the 
presence of background traffic. The bandwidth of the 
bottleneck link was configured to be 400 Mbps. The buffer 
size of the bottleneck link was fixed to the maximum of 2 
Mbytes. The long-lived and short-lived background flows 
were generated by TCP and their transmission rates were 
elastic to the amount of traffic in the network to the extent 
limited by the maximum allowed by 64KB receiver buffer 
size. When one high-speed TCP flow was run with one flow 
of TCP-SACK both having same RTTs, then even with 
background traffic the utilization of HTCP, FAST and 
STCP with RTTs of 160 and 324ms was significantly lower 
than that of the other protocols. It was mentioned that the 
problem was related to the inherent protocol behavior of 
HTCP in the way that HTCP ties its window reduction to 
the estimated buffer size of the network. The results showed 
STCP as simply too aggressive. For FAST, its behavior 
became less predictable in the presence of background 
traffic due to noise in the RTT estimation.  

For TCP friendliness experiments were run with one 
high-speed TCP flow and one regular TCP flow with the 
same RTT (varied from 16ms to 324ms) over the same 
bottleneck link with and without background traffic. TCP-
friendliness was measured with Jain’s fairness index [19]. It 
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was observed that HTCP had the best TCP-friendliness in 
very low RTT networks with or without background traffic. 
However, as RTT increased beyond 16ms, HTCP’s fairness 
to TCP dropped rapidly in both cases. In general it was 
noted that all TCP variants except FAST improved their 
TCP-friendliness when background traffic was added to the 
experiments. This was mostly because of two reasons. First, 
increased background traffic took away bandwidth from 
high speed TCP variants, so they became less aggressive as 
their average window sizes became smaller than without 
background traffic. The other reason was that with 
background traffic, randomness in packet losses increased. 
HSTCP, CUBIC and BIC improved their TCP fairness quite 
considerably with background traffic. It was observed that 
FAST showed the best TCP friendliness in high RTT 
networks.  

In [20] the buffer size was set equal to 200-500 packets as 
are suggested values for buffers in Cisco Systems router 
[21]. According to the authors TCP-Libra showed more 
friendliness to TCP NewReno than Vegas, Cubic, and Hybla 
coexisting with TCP NewReno.  

In [22] the Performance of STCP, HSTCP, BIC TCP, 
FAST TCP and HTCP was evaluated. The ratio of 
throughputs of two flows under symmetric conditions (same 
propagation delay, shared bottleneck link, same congestion 
control algorithm) was measured, as the path propagation 
delay was varied from 16ms to 320ms. Results were shown 
for 10 Mbps and 250 Mbps bottleneck bandwidths. The 
bottleneck queue size was 20% BDP. It was observed that, 
while Standard TCP and HTCP were essentially fair (the 
competing flows achieve, to within 5%, the same average 
throughput) under these conditions, STCP and FAST TCP 
were notably unfair. HSTCP and BIC TCP were also 
mentioned to exhibit significant unfairness but to a smaller 
degree than Scalable-TCP and FAST TCP.  

B.  Mixed High-speed Mechanisms 
In [23] two different protocols were tested at a time and 

the need of a standard for high-speed TCPs was stressed. An 
evaluation study of competing high-speed TCP flows was 
done where one flow entered a network in which another 
high-speed flow had already reached its maximum data rate. 
The fairest result would be for the existing flow to give half 
of its bandwidth to the new flow in order to allow both 
flows to evenly share the link. The results showed that in 
most cases this did not happen, but rather one high-speed 
flow dominated the other. HSTCP, STCP, FAST, HTCP, 
BIC TCP and CUBIC were studied in a network with a 622 
Mbps bottleneck and 100 ms RTT. The maximum router 
queue buffer length of 100% of the BDP, 20% of the BDP 
and 40 packets were used.  

For a 20% BDP router queue buffer, Intra protocol 
fairness suffered when competing flows were started at 
different times. STCP was too aggressive in obtaining 
throughput from other high-speed flows and most of the 
high-speed protocols were not fair when competing with 
other high-speed protocols. To ensure that the TCP window 
size was not a limiting factor, each TCP connection had a 
maximum window size of 67000 segments, which was 
about 64 MB. Each simulation was run for 500 seconds. For 
each protocol a set of six experiments was run with a 
maximum queue buffer size. Within each set, flow 1 used 
the same protocol and flow 2 used a different one of the six 

protocols. With a router queue buffer length of 40 packets, 
utilization suffered, with many pairs of flows together 
obtaining less than 50% of the total link capacity. A queue 
buffer length of 100% BDP provided the best link 
utilization, but may be realistic for real networks. With a 
20% BDP queue buffer length, all experiments had a total 
link utilization of 99%-100%.  

For the remainder of the experiments a queue buffer 
length of 20% BDP was used. Of all the results, the pairing 
of HTCP and BIC TCP when HTCP started first gave the 
best fairness results. When the order of the protocols was 
reversed, the behavior was much less fair, with BIC TCP 
controlling most of the throughput. Since FAST is a delay-
based protocol, as the queuing delay increases, FAST 
adjusts its window either by increasing more slowly than 
before, or by decreasing, depending on the degree of the 
increase in the queuing delay. Of all the experiments, the 
experiments involving one STCP flow showed very poor 
fairness results. It was shown that STCP was quite 
aggressive in obtaining and keeping bandwidth even when 
competing with another STCP flow. FAST improved its 
intra-protocol fairness performance when both flows started 
at the same time. The starting time of flows also had an 
affect on BIC TCP. When BIC TCP and either HSTCP or 
HTCP started at the same time, BIC TCP increased its 
window aggressively and did not let other flows fairly share 
the bandwidth.  

In [24] only two different protocols were tested at a time. 
In the experiments flows were started at the same time. New 
Reno TCP was compared with Parallel TCP Reno (P-TCP), 
STCP, FAST TCP, HSTCP, HighSpeed TCP Low Priority 
(HSTCP-LP), BIC TCP and HTCP. The analysis compared 
and reported on the stacks in terms of achievable 
throughput, impact on RTT, intra and inter-protocol fairness 
and stability. Experiments were done for 20 minutes for 
small RTT network of 10 ms, medium RTT network of 70 
ms and high RTT network of 170 seconds. The bottleneck 
capacity for most of the tests was set to 622 Mbps. For 
inter-protocol fairness, two different flows were sent on the 
link from two different machines. On the short RTT 
network, it was shown that P-TCP behaved very aggressive. 
Only BIC TCP was sufficiently aggressive to compete with 
P-TCP, but it appeared too aggressive for the other 
protocols. The results showed that STCP, which was very 
aggressive on the short RTT network, became quite gentle 
on the high RTT network. On the other hand, HTCP, which 
was gentle in the small and the medium RTT networks, 
became aggressive for the high RTT network. HSTCP was 
too gentle in the tests. 

In [25] High-speed transport protocols – HSTCP, STCP, 
FAST, CUBIC, HTCP and UDT – were also evaluated by 
mixing two of the mechanisms at a time. 

Bottleneck bandwidth of 1 Gbps was used. The default 
value of 127 packets was mainly used as the output buffer 
size. A large buffer size of 512 packets was also used to see 
the impact of buffer size. Every high speed transport 
protocol flow achieved a high throughput near to 1 Gbps. 

In an experiment using buffer size of 127 packets and 
then buffer size of 512 packets, a large difference in their 
throughput characteristics of FAST and Scalable TCP flows 
was observed. The throughput of FAST flow was greatly 
improved by increasing the buffer size at the edge routers 
larger. When the buffer size was set to 127 packets, losses 



 47

of packets were observed with FAST, while no packet 
losses occurred with FAST when the buffer size was 512 
packets. On the other hand, the throughput of Scalable TCP 
seemed unstable with a larger buffer size in edge routers. In 
one experiment Linux was adopted as the sender side OS 
and FreeBSD (ver.5.3) and Windows XP (SP2) were 
adopted as receiver side OS. It was observed that all 
protocols (except for standard TCP) achieved high 
throughput regardless of the kind of receiver side OS. That 
is the majority of users on the Internet were ready to fill up 
the bandwidth up to 1 Gbps as receivers if the sender had 
employed such the high-speed protocols. It was mentioned 
that while every high-speed transport protocol flow 
eventually achieved a high throughput near to 1 Gbps, the 
throughput in the case of the XP receiver increased more 
slowly compared with the cases of Linux and FreeBSD 
receivers. In addition, Standard TCP flows in the case of XP 
achieved higher throughput than in the cases of Linux and 
FreeBSD.  

Co-existence of a high-speed transport protocol and a 
long-lived Standard TCP was also examined in [25]. It was 
observed that a high speed transport protocol flow starved 
the long-lived Standard TCP flow, and the performance of 
the high speed transport protocol was merely degraded. An 
experiment was done to examine the throughput 
characteristics when two of the high-speed transport 
protocol flows co-existed in the path. It was found that the 
link utilization degraded when different kinds of high-speed 
transport protocols flows coexisted.  

Experiments were also done to examine the co-existence 
of short-lived TCP flows with a high-speed transport 
protocol flow. The performance of the high-speed transport 
protocol flow was considerably affected by the coexisting 
short-lived TCP flows, even though the amount of these 
flows was small. The larger the averaged file size of the 
short-lived TCP flow was, the larger the observed damage 
in the high-speed transport protocol flow became, except for 
UDT. The UDT flow was also affected by coexisting short-
lived TCP flow, but its degree of degradation was relatively 
small. The results indicated that coexisting short-lived 
standard TCP flows could considerably damage the 
performance of high-speed TCP-based transport protocol 
flows although coexisting long-lived standard TCP flows 
could not so. Setting the buffer size at the bottleneck nodes 
larger could decrease the degradation of throughput of both 
high-speed TCP and short-lived TCP flows.   

 

V. CONCLUSION 
Our simulation work indicates that, in the regime of little 

congestion, Linux (with kernel version 2.6.7 or higher) will 
perform better than Microsoft Windows if systems of both 
type share the same network. This is not to say that CTCP 
could not outperform BIC or CUBIC in isolation in some 
circumstances – it is the mixture that we are worried about, 
and that this paper addresses. Our review of related work 
has shown that this problem does not only concern BIC, 
CUBIC, CTCP and standard TCP – numerous fairness 
issues exist among many other high-speed TCP variants. 

These results leave us with a number of open questions 
regarding the practical application of congestion control in 
current operating systems. For instance, should Linux make 

the choice of congestion control application dependent by 
using BIC for transfers of large files only and CUBIC for 
everything else? Will the more aggressive behavior (which 
translates into better performance for the user) of BIC and 
CUBIC (as opposed to standard TCP and CTCP) cause 
more users to switch from Microsoft Windows to Linux? 
Will people be disappointed with the network performance 
of Microsoft Windows Vista as they compare these systems 
in the same network and at the same time? And, most 
disturbingly, could such a development lead to some sort of 
an “arms race” for more aggressive congestion control 
mechanisms in the long run? We have seen that there is still 
headroom: STCP is an example of a mechanism which is 
more aggressive than most other protocols in many cases. 

We believe that these are serious concerns, and that it is 
high time for the IETF to act. A new congestion control 
framework should be specified, and this framework should 
be beneficial for the Internet as a whole, and in line with 
incentives of users – that is, it should be advantageous for a 
single end user as well as an operating system designer to 
follow the recommendation. To this end, we believe that the 
new framework could either follow the conservative path of 
CTCP (which may be an overly prudent decision, as single 
users will see better performance with a more aggressive 
scheme when traffic is mixed) or specify a congestion 
control behavior that is more aggressive than standard TCP, 
yet designed in a way that preserves the stability of the 
Internet. 

In our opinion, this new framework should replace the 
notion of TCP-friendliness. But what could such a 
framework look like? Could the recommendation simply be 
that (and note that this is a tongue-in-cheek statement) new 
mechanisms should, for instance, be “CUBIC-friendly”? 
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