
55

Modeling and Analysis to Estimate the
End-System Performance Bottleneck for

High-Speed Data Transfer
Amitabha Banerjee, Biswanath Mukherjee, and Dipak Ghosal

Department of Computer Science, University of California, Davis, CA 95616, USA
abanerjee@ucdavis.edu, mukherje@cs.ucdavis.edu, ghosal@cs.ucdavis.edu

Abstract— The bandwidth available in a high-speed backbone
network today is much greater than the capacity at the edge.
As an example, when the transmission line rate is 10 Gbps, the
end computing machine (end-system) may not be able to keep
up with the arriving data rate and is hence often a bottleneck
for data transfer. A key deficiency in most transport protocols is
the lack of an accurate estimate of this bottleneck rate. In the
absence of the same, the sender often overshoots the receiver’s
capacity resulting in packet losses. When the sender receives
feedback about the packet losses, it throttles the sending rate.
Repeat occurrences of the same limits the performance of end-
to-end data transfer.

We propose a mechanism to determine the end-system bottle-
neck rate. We employ a Stochastic Reward Net (SRN) queuing
network model which captures different system components such
as the processor, disk, etc., as well as the current workload in
terms of the number of CPU-bound and I/O-bound tasks. The
sending rate which would yield the best performance for data
transfer to the end-system is estimated from the above model. We
define this rate as theeffective bottleneck rate. Finally, we validate
our analytical model on an experimental testbed and demonstrate
that matching the sending rate with the effective bottleneck rate
leads to improved performance of end-to-end data transfer.

I. I NTRODUCTION

End-systems such as end-user workstations, scientific com-
putational systems, cluster nodes, etc. are now equipped with
10 Gbps Network Interface Cards (NICs) [6]. Also occurring
is a shift from the packet-switched paradigm to the circuit-
switched paradigm for large-scale high-speed data transfers.
Backbone optical circuit-switched networks which provide
dedicated end-to-end circuit connectivity between a network
operator’s Points-of-Presence (PoP) have now been deployed.
Such networks are described in the literature as lambda grids.
The National LambdaRail (NLR) [3] and Department of
Energy (DOE)’s UltraScienceNet [2] projects in the United
States, and CANARIE’s CA*net in Canada [1] are a few exam-
ples. The scientific community already uses such infrastructure
to establish an end-to-end circuit between two end-systems for
deterministic large-scale data transfers required by scientific
experiments and applications.

With an end-to-end circuit, there is no congestion in the
core network (lambda grid) because dedicated end-to-end
bandwidth is available. In such a setting, the congestion moves
to the edge of the network, namely the end-system, which may
be unable to handle the high bit-rate connections available in
the lambda grid. For example, high-priority and critical tasks
may pre-empt the execution of the task which is responsible

for receiving data. Compute-intensive tasks such as analysis
and visualization of the received data may also be executing
at the end-system, in which case the operating system (OS)
has to schedule a computationally (CPU)-bound task (e.g.,
visualization), and an interrupt-driven task (receiving data)
simultaneously. In such a case, packets may get dropped due
to buffer overflow if interrupts are not serviced by the OS
within the appropriate time. Such losses must be minimized
to improve the data transfer time. This may be achieved by
transmitting data at a rate which matches the receiving end-
system’s ability, so that the OS can handle the arriving packets
with few or no packet losses.

Our contribution in this work is to demonstrate that end-
system dynamics may often be modeled and predicted to a
reasonable accuracy. We develop a SRN queuing network
model to capture the system components such as the processor,
disk, etc. We solve this model to estimate the end-system
effective bottleneck rateas a function of the current workload
(the number of executing tasks). We demonstrate that such
an end-system’s rate-matched sending rate maximizes the
network utilization while minimizing the losses at the end-
system and the file transfer time. Thus, the same may be used
to achieve efficient flow control.

In order to validate our analytical model, we use an exper-
imental setup in which two machines are connected using a
1-Gbps Ethernet link. By comparing the experimental results
with the analytical model, we demonstrate that theeffective
bottleneck ratedetermined using our analytical model and
chosen as the sending rate yields a file transfer time very close
to the experimentally observed optimal value of the sending
rate. This validates the importance of the analytic model in
determining the end-system bottleneck.

This paper is organized as follows. Section II describes
the proposed SRN-based queuing network model to char-
acterize the end-system. In Section III, we illustrate how
some parameters of SRN model such as processing rates
may be determined. Section IV presents an evaluation of our
proposed analytical model with experimental results on a 1
Gbps Ethernet testbed. We conclude this paper in Section V.

II. M ODELING AND ANALYSIS OF THE END-SYSTEM

We determine theeffective bottleneckrate by using the
following three steps:

A: Service-Time Distribution Analysis:

56

We model the end-system as a SRN queuing network
model. We determine the service-time distribution of the
processing of the interrupt service routine calls generated
by the NIC, as a function of the end-system workload.
It is very difficult to obtain a closed-form expression for
this distribution because of the complexity of the queuing
model representation of the end-system. An alternative is
to use thetagged customerapproach [11]. The interrupt-
handling process is considered to be thetagged customer.
Its service-time distribution conditioned on the state of
the queueing network at the time of arrival of the tagged
customer, is then computed.

B: NIC Packet Loss Analysis:
We model the NIC as aM/M [N]/1/K bulk-service
finite-capacity queue. The arrival rate is the sending data
rate. The service corresponds to interrupt processing,
and the service rate is determined from the service time
distribution in the previous step. Moreover, each service
occurs in a batch of fixed sizeN ; this is to model interrupt
coalescing, in which a group of packets is served by
a single interrupt service routine. The queue has finite
capacityK.

C: Determination of Effective Bottleneck Rate:
Given the packet loss probability, we determine the time
to transfer a file of known size on a link of known
propagation delay, as a function of the sending data rate.
The effective bottleneck rateis the sending rate which
yields the minimum transfer time.

We now describe each of the three above steps in greater
detail.

A. Service-Time Distribution Analysis

Queuing networks have been successfully used to model
the performance of computer systems, particularly for issues
such as resource contention [12]. In order to obtain the
effective bottleneck rate, we wish to determine the service-
time distribution of interrupt servicing in the presence of other
end-system tasks.

Computing the service-time distribution using the tagged
customer approach is a two-step process. The first step in-
volves determining the steady-state probability vector for the
queuing network without the tagged customer, calledsteady-
state analysis. The second step uses the above steady-state
probability vector to compute the time-to-absorption distribu-
tion. This step is calledtransient analysis.

To construct a representative model of the end-system, we
adopt a variation of the Stochastic Petri Net (SPN) called
Stochastic Reward Net (SRN), proposed in [8]. Graphically, a
Petri Net is a directed graph with two disjoint types of nodes:
placesandtransitions. Directed input/output arcs connect from
a place to a transition and from a transition to a place,
respectively. A positive integer calledmultiplicity may be
marked for each arc. Each place may have zero or more tokens
to start with, which is known asmarking. A transition is
enabled when each of its input places has at least as many
tokens as the multiplicity of the arc. When a transition occurs,
a number of tokens equal to themultiplicity is delivered from

the input place to the output place. In SPN, a transition
time may be associated with each transition. Moreover, this
transition time may be dependent on the currentmarking in
the SPN.

A SRN is obtained from the SPN by associating reward
rates with the markings. With the help of such a reward rate,
the time to reach a particular marking may be determined. A
SRN can be automatically converted into a Markov reward
model, thus permitting the evaluation of not only performance
and availability but also their combination. More details about
the SRN are available in [12] and are omitted here for the sake
of brevity. Commercial packages such as Stochastic Petri Net
Package (SPNP) [5] may be used to solve the SRN.

In order to model the end-system as a SRN, we classify
tasks executing at the end-system into different categories as
follows:

1) CPU-bound tasks:These tasks are computationally in-
tensive and have high processor utilization. Examples
are simulation and visualization-based tasks. Since such
tasks have long execution times and are not interactive,
they are usually assigned a lower dynamic priority by
the OS.

2) Input/Output (I/O)-bound tasks:These tasks are I/O
intensive, and they spend significant time waiting for
a peripheral device other than the NIC. Examples are a
text editor or a task interacting with a disk-subsystem.
Processor utilization is therefore significantly low. In
order to provide better interactive experience to users
and to improve utilization of peripheral devices, the OS
assigns them a high dynamic task priority. Since network
I/O is modeled as a tagged customer, it is not classified
into this task category.

We consider a closed queuing network model, in which
the number of tasks of each task category is available and
constant. The SRN model for steady-state and transient anal-
ysis is shown in Fig. 1. Circles are used to denote placesP ,
and rectangular boxes are used to denote transitionsT . The
processor (CPU) is assumed to follow the Processor Sharing
(PS) service discipline and is modeled as a place. In PS, the
processor allocates equal share to each executing task if a long
time interval were to be considered. The scheduling of most
OSs is approximately close to PS.

The service rate of a processor in PS is dependent on the
number of tasks. This is modeled using marking-dependent
input/output arcs. For example, the transition from the proces-
sor to the disk of the I/O task is dependent on the number
of tasks queued at the processor. The number of CPU-bound
tasks is known and is denoted by#C. The number of I/O tasks
instantaneously queued at the processor is denoted by#i.
Therefore, the transition rate for an I/O task from processor
to disk is defined by:

TCPU−>Disk =
#i ∗ µP I/O

#i + #C
(1)

This is represented as an output arc in Fig. 1. The naming
notations for the service times of different tasks are shown in
Table I.

57

#i

PS FCFS

Representation
of I/O process

Disk access
time

S

PS

A Absorption State
Representation
of Network I/O
Interrupt Process
As a Tagged Customer

_ /# *
(# #)

P I Oi
i C
µ
+

_

(# # 1)
P Net

i C
µ
+ +

Dµ

(a) Steady State Analysis

(b) Transient Analysis

#i

PS FCFS

Representation
of I/O process

Disk access
time

_ /# *
(# # 1)

P I Oi
i C

µ
+ + Dµ

Guard: All transitions stop when task
reaches Absorption State

#i= Number I/O-bound tasks, #C=Number of CPU-bound tasks

Fig. 1. SRN model to determine theeffective bottleneck rate.

An I/O task interacts alternately with a peripheral device
(e.g., disk, printer, etc.), which we broadly label as a disk and
the processor. It is expected that the processor service time will
be much less than the disk processing time for an I/O task (i.e.,
µP I/O >> µD). The disk is modeled as First-Come-First-
Serve (FCFS) service since it serves requests in a sequential
fashion. Since the CPU-bound task consumes a constant CPU
workload, the fraction of the processor available to other tasks
in a PS discipline is reduced by the corresponding factor.

For steady-state analysis, the SRN model in Fig. 1(a) is
analyzed to determine the steady-state probabilities of different
markings in the SRN (corresponding to the number of tasks
at each placeP). Thereafter, for transient analysis, network
I/O is represented as an interrupt process. Service of this task
corresponds to the CPU handling the interrupt and transferring
the packets from the NIC buffer to the application with
processing along the network protocol stack. This task is
represented as a tagged customer.

Fig. 1(b) shows the SRN model for transient analysis. The
response-time distribution for the tagged customer to reach
the absorption state (A) from arrival state (S) is determined
by associating a reward rate of0 when there is no marking
in the absorption state (A), and a reward rate of1 otherwise.
The above time distribution may then be determined as the
expected value of the reward after a given time. The initial

TABLE I

NAMING NOTATIONS FORSRN MODEL

Symbol Notation
µP I/O Expected processing rate for I/O Task
µP Net Expected processing rate for Network I/O Interrupt
µD Expected disk processing rate

probabilities of different states determined from Fig. 1(a) may
be easily incorporated by adding a vanishing initial marking
that transfers to all the possible steady states with the specified
probabilities. In this way, we determine the response-time
distribution for an interrupt service routine.

B. NIC Loss Analysis

The NIC is modeled as aM/M [N]/1/K bulk-service
finite-capacity queuing model. NIC cards transfer data to main
memory using Direct Memory Access (DMA). However, the
portion of memory reserved for DMA by the device driver
is limited. For example, the device driver for the Broadcom
BCM5700 1-Gbps Ethernet NIC that we employed in our
experimental studies reserved 96 KBytes of memory. This is
modeled by the finite capacityK in our queuing represen-
tation. NICs also have the feature of interrupt coalescing, in
which an interrupt is generated only when a certain number
of packets arrive. When the interrupt is processed, all these

58

packets are served as a bunch. For example, the BCM5700
generates one interrupt for every 6 arriving packets. The same
is modeled using a bulk-service queue, where service occurs
in a batch of sizeN . Packet arrival at the NIC is modeled as a
memoryless process with mean rate equal to the sending rate.
The service corresponds to the OS processing the interrupt,
which is akin to the tagged customer in the SRN model.

The M/M [N]/1/K queue does not have a closed-form
expression for packet loss. However, it may be easily solved
by constructing the SPN shown in Fig. 2. An output arc of
multiplicity N is used to denote bulk service. An inhibitor
arc of multiplicity K is used to prevent arriving packets to be
added to the buffer when the buffer is full.λ is the mean packet
arrival rate, andµ is the mean interrupt servicing rate, which
may be determined from the response-time distribution of the
interrupt-handling process from the SRN model, as illustrated
above.

λ µ
N

K

Fig. 2. SPN to represent theM/M [N]/1/K queue.

C. Determination of Effective Bottleneck Rate

We consider the Reliable Blast UDP (RBUDP) [10] as an
example of a rate-based UDP transport protocol. Given the
loss probability determined in the above step, and neglecting
the impact of any other losses, we may estimate the time to
transfer a file of known size as follows:[10].

T = [Tprop +
Stotal

Bsend
] (2)

+[(Nresend ∗ Tprop) +
bNresendc∑

i=1

l ∗ Ssendi−1

Bsend
]

+[(Nresend + 1) ∗ (
Stotal

8 ∗ Spkt ∗ Bsend
+ Tprop))]

where:
• T is the estimated transfer time,
• Tprop is the one-way propagation delay,
• Stotal is the total of the file size and the overhead,
• Bsend is the sending rate,
• Nresend is the number of times to resend, which may be

calculated from the loss rate as:

Nresend = logl(Spkt/Stotal) (3)

• l is the loss probability,
• Ssendi−1 is the payload to be sent in theith iteration,
• Spkt is the packet size,Spkt=1468 bytes considering that

the MTU of an Ethernet frame is 1500 bytes, and the
UDP-over-IP overhead is (8 + 24 = 32) bytes.

The transfer time is estimated as the sum of transmission
and propagation delays involved to transfer the file. This

consists of three terms. The first term represents the time
to transfer the entire file. The second term represents the
cumulative time to send the packets corresponding to the error
sequence numbers in multiple iterations of sending. The third
term represents the time to transmit the lost-packet sequence
numbers from the receiver to the sender.

The end-systemeffective bottleneck rateis defined as the
sending rate which yields the minimum file transfer time, i.e.,
Bsend which yields the minimum value ofT .

We note that, although we have described a simple model
for an uniprocessor system and a single network I/O task, it
may be easily extended to Symmetrical Multi Processor (SMP)
systems and multiple network I/O tasks. Additional processors
may be represented as places in the SRN model, and the
transitions may be appropriately modeled to achieve load
balancing among the processors. Similarly, multiple network
I/O tasks may be modeled similar to I/O tasks, while one
of them is considered as a tagged customer for end-system
bottleneck analysis.

III. D ETERMINING THE MODEL PARAMETERS

In order to employ the queuing network model described
above to determine theeffective bottleneck rate, we must deter-
mine the service-time distributions for processing of the I/O-
bound and the interrupt service routine calls, and the current
workload at the end-system (i.e., the number of CPU-bound
and I/O-bound tasks currently executing). The service-time
distributions quantify the hardware aspects such as processing
rates. These are static parameters which must be determined
only once. The workload quantifies the dynamic conditions at
the end-system.

In order to determine the service-time distributions,
we leverage MAGNET (Monitoring Apparatus for General
kerNel-Event Tracing)[9]. MAGNET allows us to timestamp
each event with the CPU cycle counter which is the highest-
resolution clock available on most machines. We examine the
end-system with the following representative task workloads
corresponding to each task category:

1) Input/Output (I/O)-Bound Task: We choose a task which
reads a randomly generated line number from a very
large file stored in a disk. Let the mean time interval
between successive disk accesses, as measured by MAG-
NET, betinter−disk and the mean time interval for a disk
access betdisk. We determine the service times as:

µP I/O =
1

tinter−disk
µD =

1
tdisk

2) Interrupt-Handling Task: We choose a task which is
receiving data through the NIC. Similar to the above
method,µPNet

was determined from the context-switch
intervals to serve the interrupt generated by the NIC.

The above representative workloads are used to measure the
processor service-time distributions on an unloaded machine.
In the presence of other tasks running on the machine, the
service time distributions do not differ by much, except for
some very high service time values (outliers), when the OS is
possibly handling some alternate task which may be starving.

59

As a consequence, the loss rate may be slightly higher than
that reported by the analytical model. Some of the effects of
the outliers may be handled by providing dynamic feedback
from the end-system, using RAPID [7].

We note that the above representative I/O workload is only
an approximation of the execution plan of a general I/O-bound
task. Given the variety of I/O-bound tasks, it is extremely
difficult to characterize the CPU processing and peripheral
device service rates for all of them. Hence, the representative
workload is used as an example for the processing parameters
for a general I/O-bound task in our analytical model. Although
the above may be an approximation, its impact is minimal
because the CPU is usually the bottleneck resource, and I/O-
bound tasks have low CPU utilizations.

The end-system workload may be determined from OS
parameters. For example, Linux and Free BSD OS maintain
a proc directory which records different kernel execution
parameters. A system command such astop may be used to
parse the proc file systems and present a real-time view of
the workload. Usingtop, we may determine the total number
of tasks. Tasks may be either in running state or in sleeping
state. CPU-bound tasks and I/O-bound tasks may be classified
based on the average sleep-time values. The OS maintains
the average sleep time of every task by adjusting its value,
each time the task wakes out of sleep, or gives up processing
voluntarily or involuntarily. With these steps, we obtain the
parameters to evaluate the SRN model in Fig. 1.

The parameters of theM/M [N]/1/K queue to model
the NIC buffer may be determined from the device driver
parameters. For the Broadcom 5700 1-Gbps Ethernet Adapters
used in our experimental studies, the device driver allocated
memory of 96 KBytes which would correspond toK =
64 maximum-sized Ethernet frames (MTU=1500 bytes). The
interrupt coalescing factorN was 6 Ethernet frames.

In the next section, we compare how the results from the
analytical model compare with that in an experimental setting.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

400

600

800

1000

1200

1400

1 2 3 4

#CPU-bound Tasks

M
bp

s

0
1
2
3

I/O-bound
Tasks

Fig. 3. Effective bottleneck rateversus number of tasks.

We connected two Dell SX280 machines (with Intel Pen-
tium 3.2 GHz processors and 1 GByte RAM) back-to-back

TABLE II

MEASURED VALUES OF PROCESSING PARAMETERS USINGMAGNET

Symbol Expected Rate per ms
µP I/O 4.6
µP D 1.01
µP Net 41.6

using a 1-Gbps Ethernet link. Using the MAGNET version
2.0 [9] toolkit, we determined the processing parameters with
the representative workload as described in Section III. The
measured parameters are shown in Table II.

We apply these parameters to solve the analytical model
described in Section II. We determined theeffective bottleneck
rate as a function of the number of CPU-bound tasks and the
number of I/O-bound tasks executing in parallel. The number
of CPU-bound tasks executing was varied from 1 to 4. The
number of I/O-bound tasks executing was varied from 0 to
3. An example of a system running 2 CPU-bound and 2
I/O-bound jobs in parallel is a system running two parallel
visualization applications, the data from which is periodically
updated in a file. We limit our study to 4 CPU-bound and
3 I/O-bound tasks because most systems are not expected to
have a higher task load. Besides, the bottleneck rate does not
decrease much beyond the above task load.

The effective bottleneck ratesare shown in Fig. 3. As
expected, theeffective bottleneck ratedecreases with higher
workload. We observe that the slope tapers down with in-
creasing workload. The drop in the bottleneck rate is sharper
with increasing number of CPU-bound tasks than increasing
I/O-bound tasks. This is because the I/O-bound tasks do not
compete much for the CPU.

Having determined theeffective bottleneck rateusing the
analytical model, our aim was to verify how it compares
with an experimental study. We used the RBUDP protocol
in the QUANTA 1.0 package [4] as an example of a rate-
based UDP transport protocol. In order to emulate propagation
delay, we delay the start of each UDP burst from the sender by
the propagation delay, and similarly delay the feedback from
the receiver. The file size was 500 MB and the propagation
delay was 100 ms, the same as those values studied in the
analytical model. We emulated a CPU-bound task by using an
infinite for-loopwhich uses CPU cycles constantly, and an I/O-
bound task using a process that reads a randomly-generated
line from a file. The above I/O-bound task is the same as
the representative workload used to determine Table II. The
sending rate for the RBUDP protocol was varied from 500
Mbps to 950 Mbps in increments of 50 Mbps, note that 950
Mbps was the highest rate at which the sender could blast UDP
packets on a line operating at a maximum transmission rate of
1 Gbps. For each sending rate, the experiment of transferring
the payload was carried out 20 times, and the mean value of
the file-transfer time was recorded.

The file-transfer time for different sending rates and for dif-
ferent CPU-bound loads with no I/O-bound task executing is
shown in Fig. 4(a), and for different I/O-bound task loads with
2 CPU-bound tasks is shown in Fig. 4(b). As the sending rate
is increased from 500 Mbps, the file-transfer time decreases.
However, beyond a certain rate, the packet losses become quite

60

Dotted line represents analytically determined bottleneck rate

4

5

6

7

8

9

10

11

12

13

14

500 600 700 800 900 1000
Sending Rate (Mbps)

Fi
le

 T
ra

ns
fe

r T
im

e
(s

)

#CPU Tasks = 4 #CPU Tasks = 3

#CPU Tasks = 2 #CPU Tasks = 1

(a) Varying number of CPU-bound tasks.

Dotted line represents the analytically determined bottleneck rate

4

6

8

10

12

14

16

18

500 600 700 800 900 1000

Sending Rate (Mbps)

Fi
le

 T
ra

ns
fe

r T
im

e
(s

)

#CPU Tasks =2, IO Tasks = 3
#CPU Tasks =2, IO Tasks = 2
#CPU Tasks =2, IO Tasks = 1
#CPU Tasks = 2

(b) Varying number of I/O-bound tasks.

Fig. 4. Experimental results for different workloads (dotted vertical line represents the analytically-evaluated bottleneck rate).

high as the receiving end-system is not able to handle packets
at such a high rate. Beyond this rate, the file-transfer time
increases. The objective of our analytical study was to attempt
to evaluate this rate which will lead to an optimal file-transfer
time. The dotted vertical lines represent theeffective bottleneck
rate determined by the analytical model. We observe that
the measure of theeffective bottleneck rateprovided by the
analytic model yields a file-transfer time which is very close
to the rate at which the minimum value of file-transfer time
that is achieved. This illustrates the ability of the analytical
model to determine theeffective bottleneck. For all cases in
which the number of CPU-bound tasks is greater than one,
the effective bottleneck rateis lesser than the line rate of 1
Gbps, indicating that the receiving end-system was indeed the
bottleneck. In a system setup of a line rate of 10 Gbps, the
receiving end-system would be a bottleneck irrespective of the
workload. We therefore expect our analytical model to be a
very useful means of evaluating the system bottleneck at high
line rates.

V. CONCLUSION

In this work, we consider the challenge of the end-system
being the bottleneck for high-speed data transfer. We propose
a mechanism to evaluate the best rate at which network
performance may be extracted from such an end-system, given
the number of executing tasks (the workload), and other
factors such as the file size and the propagation delay on the
network path. Theeffective bottleneck rateis estimated by: (i)
determining the expected service time of an interrupt service
routine call from a Stochastic Reward Net (SRN) queuing
model, (ii) applying the above service rate for loss analysis
of a M/M [N]/1/K queuing model representation of a NIC
buffer, and (iii) determining the sending rate which yields the
minimum transfer time for a file on a specified path, given the
above queuing loss.

Comparing with experiments on a 1-Gbps Ethernet testbed,
we observe that theeffective bottleneck ratedetermined ana-
lytically compares well with the data rate which achieves the
best file-transfer time.

REFERENCES

[1] CANARIE at http://www.canarie.ca/about/index.html
[2] DoE UltraScienceNet at http://www.csm.ornl.gov/ultranet/
[3] National LambdaRail at http://www.nlr.net
[4] QUANTA 1.0 package developed by EVL available at

http://www.evl.uic.edu
[5] Stochastic Petri Net Package (SPNP), available at

http://www.ee.duke.edu/k̃st/
[6] “Time for TOE: The benefits of 10 Gbps TCP Offload,”Chelsio

Communications White Paper, May 2005.
[7] A. Banerjee, W-c. Feng, B. Mukherjee, and D. Ghosal, “RAPID: An

End-System Aware Protocol for Intelligent Data Transfer over Lambda
Grids,” Proc. IEEE/ACM IPDPS 2006, Rhode Island, Greece, 2006.

[8] G. Ciardo, A. Blakemore, P. Chimento, J. Muppala, and K. Trivedi,
“Automated generation and analysis of Markov reward models using
Stochastic Reward Nets,” in C. Meyer and R.J. Plemmons, editors,
Linear Algebra, Markov Chains, and Queuing Models, IMA Volumes in
Mathematics and its Applications, vol. 48, Springer-Verlag, Heidelberg,
Germany, 1992.

[9] M. Gardner, W. Feng, M. Broxton, A. Engelhart, and G. Hurwitz,
“MAGNET: A Tool for Debugging, Analysis and Adaptation in Com-
puting Systems,”Proc., CCGrid 2003, Tokyo, Japan, May 2003.

[10] E. He, J. Leigh, O.Yu, and T. DeFanti, “Reliable Blast UDP : Predictable
High Performance Bulk Data Transfer,”Proc., IEEE Cluster Computing,
Chicago, Illinois, 2002.

[11] J. Muppala, K. Trivedi, V. Mainkar, and V. Kulkarni, “Numerical
computation of response time distributions using stochastic reward nets,”
Annals of Operations Research, no. 48, pp. 155-184, 1994.

[12] K. Trivedi, Probability and Statistics with Reliability, Queuing and
Computer Science Applications, Second Edition, Wiley, 2002.

