
1

Delay-based AIMD congestion control
D. Leith1, R.Shorten1, G.McCullagh1, J.Heffner2, L.Dunn3, F.Baker3

Abstract— Our interest in the paper is investigating whether it
is feasible to make modifications to the TCP congestion control
algorithm to achieve greater decoupling between the performance
of TCP and the level of buffer provisioning in the network. In
this paper we propose a new family of delay-based congestion
control algorithms that we refer to as delay-based AIMD.

I. I NTRODUCTION

The performance of the standard TCP congestion control
algorithm is intimately coupled to the level of buffer provi-
sioning along a path. For example, when buffer provisioning
is too low, throughput efficiency falls due to the buffer
emptying when TCP flows backoff their congestion windows.
Conversely, when buffer provisioning is large, the probing
action of the TCP congestion control algorithm seeks to fill
the queue thus leading to large queueing delays. Our interest
in this paper is investigating whether it is feasible to make
modifications to the TCP congestion control algorithm to
achieve greater decoupling between the performance of TCP
and the level of buffer provisioning in the network. Note
that this objective complements the recent discussion in the
literature relating to buffer sizing for TCP flows. That is, rather
than considering how buffers can be sized to accommodate
TCP flows we consider whether TCP can be modified to
accommodate network buffers.

In previous work[9], we proposed an approach for effec-
tively decoupling TCP throughput from network buffer size.
This was achieved by adapting the congestion window backoff
factor in TCP to accommodate the level of buffer provisioning
within the network. In this paper we substantially extend
this work to consider decoupling of TCP delay from buffer
size. Loss-based congestion control algorithms seek to fill
the network buffers and so can induce large queueing delays
if buffers are large. Note that large buffers are ubiquitous
in modern access networks e.g. queueing delays of several
seconds are common in DSL links. Large buffers, for example
with 250ms or more of buffering, are also still commonplace
in high-speed networks. Although the use of smaller buffersis
currently the subject of much discussion within the research
community, e.g. see [1], [5], the issue remains controversial[4]
and it is likely to be some years before such changes could
be widely rolled out. As noted above the present work is
complementary to this work on buffer sizing, considering end
host changes that seek to enhance the flexibility of designers
when choosing network buffer sizes.

Consideration of queueing delay inevitably leads to con-
sideration of delay-based congestion control algorithms.Po-

1 Hamilton Institute.2 Pittsburgh Supercomputing Center.3 Cisco Systems.
This work was supported by Cisco Systems and by Science Foundation Ireland
grants 00/PI.1/C067 and 04/IN3/I460.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

2

4

6

8

Q
ue

ue
 (

pk
ts

)

time (sec)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

10

20

Q
ue

ue
 (

pk
ts

)

time (sec)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

20

40

60

Q
ue

ue
 (

pk
ts

)

time (sec)

2 users

8 users

16 users

Fig. 1. Queue occupancy for 2, 8, and 16 flows using TCP Vegas.ns
simulation, dumbbell topology, RTT 30ms, link rate 5Mbps, 100 packet queue.

tentially, allocation of network bandwidth between competing
sources can be achieved while maintaining low queueing delay
(even when network buffers are large, unlike with loss-based
algorithms), and with almost full utilisation of network links.
High utilisation with low queuing delay is termed “operating
at the knee of the curve” and is evidently a desirable property.

Delay-based congestion control algorithms have of course
been widely studied, with Vegas[2] and FAST[8], [10] re-
ceiving particular attention. However, it is important to note
that while Vegas, FAST and related algorithms use delay as a
congestion signal, they make no attempt minimize aggregate
queuing delay. This is easy to see by considering that the Vegas
algorithm seeks to maintain some per flow target number of
packets queued in the network. Thus, the number of packets
queued scales with the number of flows in the network.
This behaviour is illustrated for example in Figure 1. Con-
sequently such protocols do not result in networks operating
at the “knee of the curve” in general. TThis observation
applies to all Vegas-type and related schemes including TCP-
FAST, e.g. seehttp://www.cubinlab.ee.mu.oz.au/
ns2fasttcp/ for results illustrating this feature of FAST.

In this paper we propose a new family of delay-based
congestion control algorithms that we refer to asdelay-based
AIMD. We demonstrate that the delay-based AIMD approach
allows algorithms to be realised with the following properties.

1. Networks in which only delay-based flows are deployed
operate at the “knee of the curve”; namely; in a low delay,
high utilisation regime with zero packet loss.

2. Operation at the “knee” is essentially achieved regardless
of the number of network flows and is largely decoupled

2

from network buffers sizes. It is also robust to perturba-
tions in queue occupancy; in other words, the delay-based
flows will co-operate to drain the network queues to a
pre-specified threshold whenever only delay-based flows
are present in the network.

3. In mixed environments, delay-based and loss-based flows
may coexist in a well-defined manner.

II. D ELAY-BASED AIMD: B ASIC ALGORITHM

To illustrate the basic rationale and features of the delay-
based AIMD approach in this section we begin by consider-
ing the case of homogeneous networks, i.e. networks where
all flows operate the same congestion control algorithm. In
Section sec:non we extend consideration to networks with a
mix of delay and loss-based flows and propose extensions to
the basic delay-based AIMD algorithm to ensure robust co-
existence with loss-based flows.

A. Ensuring low queueing delay

Our starting point is to develop an AIMD algorithm
that uses delay rather than loss (or ECN) to control net-
work congestion. Standard TCP employs anAdditive-Increase
Multiplicative-Decrease(AIMD) [3] strategy during its con-
gestion avoidance mode. AIMD congestion control can be
implemented using signals other than packet loss as a con-
gestion indicator. The basic idea here is that by backing off
when queueing delay exceeds some threshold, we can avoid
filling the queue (maintain low queueing delay) while staying
within the well-established AIMD framework. Specifically,we
consider the following delay-based AIMD algorithm:

cwnd←

cwnd + α/cwnd, on each ACK
βcwnd, if τ ≥ τ0 & cwnd > w0

βcwnd, if packet loss
(1)

where τ is the observed queueing delay,τ0 > 0 is a delay
threshold that triggers delay-based backoff, andw0 specifies
a cwnd threshold above which the delay-based action is
activated (this may be helpful, for example, to ensure that there
are sufficient packets in flight to provide a reliable estimate
of queueing delay). The queueing delayτ is estimated as
sRTT (t)−RTTmin whereRTTmin is the minimum observed
packet round-trip time andsRTT (t) is a smoothed estimate
of the current round-trip time. Loss induced backoffs are
retained as part of the algorithm to accommodate situations
where, for example, the buffers are sized such that maximum
queueing delay is less thanτ0 or where the bandwidth-delay
product is less thanw0. Since it continues to employ an AIMD
strategy, the delay-based algorithm inherits the usual fairness
and convergence properties of AIMD.

The impact of this change on the AIMD operation is
illustrated in Figure 2. It can be seen that although the buffer is
sized at 400 packets, the flowcwnd now backs off before the
queue is full. In this example we can also see that following
the first backoff wherecwnd is reduced by half, the queue
empties for a significant period of time – this is to be expected
as the delay-based algorithm backs offcwnd before the queue
is full. High utilisation be maintained by adjusting the backoff

Congestion window (packets) Congestion epoch duration (s)
100 1.1
1000 3.1
2000 4.3
5000 6.6
10000 9.2
20000 12.8
50000 19.4

TABLE I

CONGESTION EPOCH DURATION VERSUS BANDWIDTH-DELAY PRODUCT.

VALUES TAKEN FROM H-TCP INTERNET DRAFT[7].

factor appropriately – this is illustrated in subsequent backoff
events in Figure 2 and is discussed in detail in the Section
II-C.

B. Scalability to high bandwidth-delay product paths

It is important to emphasise that the choice of additive
increase functionα used in the delay-based algorithm is
flexible – any additive increase algorithm can be extended
as shown here to include backoff on queueing delay as well
as loss. In the rest of this paper we adopt the increase
function used in the H-TCP loss-based algorithm[6], [7]. This
increase function ensures that performance scales well to high
bandwidth-delay product paths while maintaining backward
compatibility in low-speed environments and has already been
the subject of extensive experimental testing, see for example
[11] and references therein. The H-TCP increase function is

α = min[1, 1 + 10(∆− 1) + 0.5(∆− 1)2] (2)

That is, the AIMD increase rateα is a function of ∆,
the elapsed time since the last backoff event. This yields a
congestion epoch duration that scales as shown in Table I
while leaving other properties (fairness, convergence rate etc)
of TCP essentially unchanged[6], [11].

60 80 100 120 140 160 180 200
0

100

200

300

400

500

600

time (s)

cwnd (packets)
queue occupancy (packets)

Fig. 2. Illustrating adjusting backoff factor to maintain high link utlisation.
(ns simulation, delay 120ms, link rate 50Mbps, 400 packet queue, τ0 20ms).

C. Ensuring high utilisation

Low queueing delay requires that we selectτ0 to be small.
However, this can lead to low link utilisation if the flows

3

respond too aggressively to congestion. Fortunately, following
[9] it is straightforward to maintain a high level of utilisation
by adjusting the AIMD backoff factor to reflect the queuing
delay when a backoff occurs. Namely, we set

β = RTTmin/RTT (t) (3)

We can understand the effect of this choice of backoff
factor in more detail as follows. Consider a single bottleneck
link with n flows (the following argument also extends
directly to multiple bottleneck situations). Before a backoff
of the congestion window, the data throughput through the
bottleneck link is given byR− =

∑n

i=1
wi/RTTi(t) = B

where B is the link rate in packets per second,wi is the
congestion window of flowi immediately before backoff
and RTTi is the RTT of flow i. Following a backoff the
data throughput is given byR+ =

∑n

i=1
βiwi/RTTmin,i,

whereβi is the backoff factor of flowi and RTTmin is the
propagation delay . Selectingβi according to (3), it follows
immediately thatR+ = R− = B and link utilisation is 100%.

The effect of this AIMD modification is illustrated in Figure
2. In this example the queue empties for a substantial period
following backoff by a factor of 0.5 (the first backoff event
in the figure) with an associated reduction in link utilisation.
Once the flow adjusts its backoff factor to the effective level of
buffer provisioning at backoff we can see that the queue now
just empties following a backoff event and the link continues
to operate close to capacity as desired.

D. Draining the queue – robust delay-based operation

Like other delay-based algorithms that have been proposed,
the delay-based AIMD algorithm requires an estimate of the
queueing delayτ . However, unlike the majority of these
algorithms, the delay-based AIMD algorithm can be designed
so that flows will always act in a collaborative manner to drain
the network buffer irrespective of the initial level of buffer
occupancy. This latter feature is important for a number of
reasons. Firstly, loss-based flows, or in some circumstances
non-elastic traffic, will act to fill network buffers. A return to
operation at the “knee” requires that there is some mechanism
for network buffers to drain after such traffic has switched
off. Secondly, draining the buffer allows the propagation delay
RTTmin to be observed by senders, which is key to accurate
estimation of queueing delay.

Fortunately, this basic property can be easily realised by
ensuring that each flow responds in a way that seeks to
reduce the minimum RTT that it has seen up to this point.
Specifically, we consider estimating the queueing delay using
τ = sRTT (t) − RTTmin. Evidently, if the queues never
empty, the flow never observes the path propagation delay and
RTTmin will be an overestimate of the true propagation delay.
WhenRTTmin is larger than the true propagation delay, the
queueing delay is consistently underestimated by a flow and
this may lead to operation with a standing queue (operation
away from the knee of the curve).

To help gain some insight, consider for the moment a net-
work with a single flow. The flow will increase its congestion

window until the estimated queueing delayτ = RTT (t) −
RTTmin exceeds thresholdτ0, and then backoff. The actual
queueing delay at backoff will beτ0 + RTTmin − Tmin,i,
whereRTTmin− Tmin is the estimation error in propagation
delay. The backoff factor (3) decreases the number of packets
in flight so as just empty estimated queue i.e. such that the
round-trip time falls toRTTmin. If we now modify the backoff
factor to be

β = δRTTmin/RTT (t) (4)

with 0 < δ < 1, then in effect we can use the multiplicative
decrease action to probe the network to discover whether an
RTT belowRTTmin is possible. This is illustrated in Figure
3 for the case of a single flow. Figure 4 gives an example of
the convergence ofRTTmin in a network with multiple flows.

150 200 250 300
100

120

140

160

180

200

220

time (s)

de
la

y
(m

s)

estimated T
min

RTT (ms)

Fig. 3. Example of ratchetting down of base RTT estimateRTTmin until it
equals the actual propagation delay. The path propagation delay is 120ms
while RTTmin is manually configured to an initial value of 200ms for
illustrative purposes. (ns simulation, propagation delay 120ms, bandwidth
50Mbps, 400 packet queue,τ0 20ms).

205 206 207 208 209 210 211 212
100

120

140

160

180

200

220

time

E
st

im
at

ed
 T

m
in

 (
m

s)

flow 1
flow 2
flow 3
flow 4
flow 5
flow 6
flow 7
flow 8
flow 9
flow 10

Fig. 4. Example of ratchetting down of base RTT estimateRTTmin in
a network with 10 delay-based flows. The path propagation delay is 120ms
while RTTmin for each flow is initially set to a random value uniformly
distributed between 120ms-240ms for illustrative purposes. (ns simulation,
10 flows, propagation delay 120ms, bandwidth 50Mbps, 400 packet queue,
τ0 20ms,δ = 0.75).

4

III. C O-EXISTENCE WITH LEGACY LOSS-BASED TCP

Delay-based flows compete poorly with loss based flows as
they experience an excessive number of backoffs as loss-based
flows fill the network queues. This problem can be addressed
as follows.

First, we note that we have some freedom in the selection
of the delay thresholdτ0. We exploit this and chooseτ0 to
be proportional to the recent level of queue occupancy. In this
way, the threshold automatically adjusts upwards when loss-
based flows are present that fill the queue, thus enabling delay-
based flows to increase their congestion window. Specifically,
we chooseτ0 according to

τ0 = (1− γ)τ̄0 + γ(RTTmax −RTTmin) (5)

with 0 < γ < 1 and whereRTTmax is a quantity that tracks
the maximum observed RTT and decays towardsRTTmin

during periods when the current RTT is belowRTTmax.
RTTmax − RTTmin is an estimate of the recent queue
occupancy andτ0 is selected to be a convex combination of
the baseline valuēτ0 andRTTmax − RTTmin. Whenγ = 0
we recover the previous delay-based AIMD algorithm. When
γ > 0, delay-based flows are able to increase their conges-
tion window even when the network queues are persistently
backlogged due to the action of loss-based flows.

Second, we modify the delay-based AIMD algorithm to (i)
perform additive increase of the congestion window only when
the queueing delay is below thresholdτ0 – the effect is to
disable the AIMD probing action once the queueing delay rises
aboveτ0, and (ii) to multiplicatively decrease the congestion
window when the queueing delay is at or aboveτ0 and the
time since the last backoff is greater than a threshold∆0 –
the effect is to limit the number of delay induced (as opposed
to loss induced) backoffs in a given time interval.

An illustrative congestion window time history is shown
in Figure 5. It can be seen that these modifications amount
to inserting a flat section, where the congestion window is
constant, into the usual sawtooth waveform. The time between
backoffs, and so the length of this flat section, is determined
by the value of∆0. The flat section is essentially an idling
period that does not alter the dynamics of a network of flows
other than to extend the duration of the congestion epochs.
When delay-based flows are competing against loss-based
ones, however, this idle period constrains the rate at which
delay-based flows backoff in response to the level of queueing
delay and can therefore be used to adjust how bandwidth is
divided up between delay and loss-based flows.

Combining these changes yields the following modified
AIMD algorithm: on each ACK,

cwnd←

cwnd + α/cwnd, if cwnd ≤ w0 or τ ≤ τ0

βcwnd, if cwnd > w0 & τ ≥ τ0

& ∆ > ∆0

βcwnd, if packet loss
(6)

where∆ is the elapsed time since the last backoff. One option
is to take∆0 to be proportional toRTTmax−RTTmin so that
we recover the original delay-based AIMD algorithm when the
queue backlog remains low andRTTmax − RTTmin small.

t i m e (s)
c w n d q u e u e i n g d e l a yτ 0

� 0
0

Fig. 5. Example congestion window time history using modified AIMD
algorithm.

The impact of these changes on fairness is illustrated in Figure
6.

0 100 200 300 400 500 600
0

50

100

150

time (s)

cw
nd

 (
pk

ts
)

delay−based flow
loss−based flow 1
loss−based flow 2
loss−based flow 3

Fig. 6. Example of heterogeneous network with a mix of delay and loss-based
flows illustrating the impact on the delay-based flow’s performance of the
modified AIMD algorithm. (ns simulation, 1 delay-based flow, 3 loss-based
flows, propagation delay 100ms, bandwidth 10Mbps, 100 packet queue).

IV. D ELAY-BASED SLOW-START

With the goal of minimizing queuing delay and loss, slow-
start poses a significant problem. Its exponential increase,
wherecwnd is doubled each RTT, can create large bursts of
packets that in turn cause large delay spikes and many losses
when cwnd eventually overshoots the botteneck queue. We
can apply the same delay backoff thresholdτ0 as used in the
delay-based AIMD algorithm to trigger an exit from slow-start
when queueing delay rises. This will keep the queue from
filling. However, due to the bursty nature of slow-start, with
associated spikes in queueing delay, it causes slow-start to exit
sooner than it should.

In order to continue a fast increase rate, but avoid the
queuing spikes of slow-start, we propose a mechanism based
on Limited Slow-Start [RFC3742]. This uses a parame-
ter, max ssthresh, which controls the maximum bottleneck
queue occupancy the flow will contribute due to congestion
window increase. To acheive this it bounds the increase of
cwnd to no more thanmax ssthresh/2 per round-trip time.

This algorithm meshes nicely with the delay-based AIMD
algorithm described above, as they both seek to keep queue

5

occupancy below a set point. A difficulty in using limited slow-
start is selecting an appropriatemax ssthresh. When used in
conjunction with delay-based AIMD,max ssthresh should
be set so that a bottleneck queue occupancy ofmax ssthresh
corresponds to a queue delay ofτ0.

To find this conversion factor, we use the initial slow-start
phase to estimate the bottleneck rate. An ack-clocked slow-
start sends at twice the rate of the ack clock, up to twice the
bottleneck rate. This results in transient queue increasesof
size cwnd(t)/2 wherecwnd(t) is the congestion window at
time t. The drain time of this queue can be observed by the
returning ACKs. WhenRTT > RTTmax, the queue’s drain
time can be estimated asRTTmax − RTTmin. The queue’s
size iscwnd(t − RTT)/2, since the ACKs are received one
RTT after the data is sent, orcwnd(t)/4, since the window
doubles each RTT. This estimation of both queue length over
drain time gives us bottleneck rate we need to convertτ0 to
max ssthresh. Specifically, whenRTT > RTTmax:

max ssthresh←

(

cwnd

4

) (

τ0

RTTmax −RTTmin

)

(7)

Comment : A significant advantage of using the parameter
τ0 (units of time) overmax ssthresh (units of bytes) is that
the behavior becomes scale independent of data rate. Limited
slow-start takesO(cwnd/max ssthresh) RTTs to reach a
given window, but this delay-based version takesO(RTT/τ0)
RTTs.

This approach is substantially different from the experi-
mental slow-start (Vegas*) proposed in [2], which measures
dispersion of the initial four-segment window to estimate the
bottleneck rate, then uses a pacing mechanism to smooth out
the slow-start. Both methods effectively limit delay spikes, but
we found the limited slow-start approach simpler as it does not
require an additional timer mechanism.

V. COMPLETE ALGORITHM

While the foregoing discussion is quite complex, the com-
plete delay-based algorithm is itself very simple. The new
delay-based AIMD algorithm is shown in its entirety in
Algorithm 1.

VI. EXPERIMENTAL RESULTS

We have implemented the delay-based AIMD algorithm in
Linux 2.6.17 and in this section we present initial experimental
results exploring the performance of the algorithm.

A. Test setup

Experiments were carried out using a high-speed testbed.
The testbed consists of commodity PCs connected to gigabit
switches to form the branches of a dumbbell topology. All
sender and receiver machines used in the tests have identical
hardware and software configurations as shown in Table II
and are connected to the switches at 1Gb/sec. The router,
running the FreeBSD dummynet software, can be configured
with various bottleneck queue-sizes, capacities and roundtrip
propagation delays to emulate a range network conditions.
Flows are injected into the testbed usingiperf.

Algorithm 1 : Pseudo code of complete delay-based AIMD
algorithm with limited slow-start

1: On each ACK:
2: RTTmin = min(RTT, RTTmin)
3: RTTmax = max(RTT, RTTmax − a × RTT/cwnd)
4: τ = RTT − RTTmin // estimate queueing delay
5: β = min(δRTTmin/RTT, 0.9)
6: if cwnd ≤ ssthresh then
7: if cwnd ≤ ssthresh then
8: if τ = T̂max then
9: max ssthresh = (cwnd/4) × τ0/(RTTmax − RTTmin)

10: end if
11: if cwnd ≤ max ssthresh then
12: cwnd+ = MSS
13: else
14: cwnd+ = max ssthresh/(2 × cwnd)
15: end if
16: end if
17: else
18: if cwnd ≤ w0 or τ ≤ (1 − γ)τ̄0+γ(RTTmax − RTTmin) then
19: cwnd+ = 2(1 − β)α(∆)/cwnd
20: end if
21: end if
22: if cwnd > w0 & τ ≥ τ̄0 & now − time of last backoff > ∆0 then
23: cwnd = β × cwnd
24: ssthresh = cwnd
25: time of last backoff = now
26: end if

Description

CPU Intel Xeon CPU 2.80GHz
Memory 256 Mbytes

Motherboard Dell PowerEdge 1600SC
Kernel Linux 2.6.6

txqueuelen 1,000
max backlog 300

NIC Intel 82540EM
NIC Driver e1000 5.2.39-k2

TX & RX Descriptors 4096

TABLE II

HARDWARE AND SOFTWARECONFIGURATION.

B. Operation at the “knee”

Figure 7 shows the measured link utilisation and mean
link delay (measured using pings) versus number of flows for
the delay-based AIMD algorithm using the H-TCP increase
function. It can be seen that the link utilisation is close to
the link capacity regardless of the number of flows. With the
delay-based algorithm the link delay remains consistentlylow
(close to the propagation delay of 250ms) regardless of the
number of competing flows sharing the link, with the mean
queueing delay remaining less than 30ms at all times. In these
tests we observed a packet loss rate of zero i.e. no losses
whatsoever, even with 128 flows sharing the link.

C. Fairness and Convergence

Since the delay-based algorithm remains within the AIMD
paradigm, it inherits many of the properties of standard TCP.
In particular, the unfairness between flows with different RTTs
is similar to that for standard TCP although we do not
present measurements demonstrating this here due to space
restrictions. The delay-based algorithm also inherits similar
convergence properties as other AIMD algorithms. Conver-

6

 0

 100

 200

 300

 400

 500

 600

 0 20 40 60 80 100 120 140

Av
g.

 T
hr

ou
gh

pu
t (

M
b/

s)

Num Flows

Delay-Based‹AIMD

 200

 250

 300

 350

 400

 450

 500

 550

 600

 0 20 40 60 80 100 120 140

Av
g.

 P
in

g
R

TT
 (m

se
cs

)

Num Flows

Delay-Based AIMD
Propagation Delay + Max Queueing Delay

Link Propagation Delay

Fig. 7. Measured link utilisation and delay with loss-basedH-TCP and the
new delay-based algorithm (usingτ0=50ms). 500Mbps link rate, 250ms RTT,
bandwidth-delay product of buffering.

gence rate refers to the rate at which the mean congestion
windows of the network flows converge to their equilibrium
values, e.g. following start up of a new flow. In the case of
synchronised flows, the convergence rate of the flow conges-
tion windows is bounded by the largest backoff factorβmax in
the network, with the 90% rise time measured in congestion
epochs bounded bylog 0.1/ logβmax (yielding a rise time of 3
congestion epochs for a backoff factor of 0.5 and 7 congestion
epochs for a backoff factor of 0.75). Note that the adaptation of
the AIMD backoff factor to main high throughput in the delay-
based AIMD algorithm, which will generally lead to a backoff
factor greater than 0.5, can therefore be expected to impact
on the convergence rate. This is illustrated, for example, in
Figure 8. In this example we have disabled slow-start so as
to highlight the congestion avoidance convergence behaviour.
Here, the backoff factor adapts to a value of approximately
0.75 and it can be seen that following startup of the second
flow at 100s the network converges close to equilibrium in
approximately 7 congestion epoch as expected. It is important
to note that while the number of congestion epochs for the
network to converge is higher when the backoff factor is
greater than the standard TCP value of 0.5, the duration of
each epoch is shorter with the delay-based scheme since it
avoids filling the queue. Overall, the impact of the adjustment
of backoff factor in the AIMD algorithm is therefore quite
small.

VII. SCOPE OF THE PAPER

In this paper we present the new delay-based AIMD algo-
rithm and preliminary experimental measurements of perfor-
mance. Space restrictions naturally limit the number of results
that we can show. As a result, we restrict consideration to

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 50 100 150 200 250 300 350 400

C
w

nd
 (

pa
ck

et
s)

Time (secs)

Flow 1
Flow 2

Fig. 8. Convergence of delay-based algorithm following startup of a second
flow. 500Mbps link rate, 250ms RTT, 250ms of buffering.

single bottleneck links and do not present results showing
operation over multiple bottleneck links (including queueing
on reverse path links). Also, due to space restrictions we do
not discuss signal processing issues relating to the estimation
of delay. That is not to say that these issues are not important,
but analysis and results on these topics will be the subject of
future publications.

VIII. C ONCLUSIONS

In this paper we propose a new family of delay-based
congestion control algorithms that we refer to as delay-based
AIMD. This class of algorithms supports low-delay, high-
throughput operation essentially regardless of buffer provision-
ing within the network and of the number of flows sharing a
link. We have implemented in Linux a delay-based AIMD
algorithm based on the loss-based H-TCP algorithm and
present initial experimental results illustrating the effectiveness
of the proposed approach.

REFERENCES

[1] G. Appenzeller, I. Keslassy, and N. McKeown. Sizing router buffers. In
Proc. ACM SIGCOMM 2004, 2004.

[2] L. S. Brakmo and L. L. Peterson. TCP Vegas: End to end congestion
avoidance on a global internet.IEEE Journal on Selected Areas in
Communications, 13(8):1465–1480, October 1995.

[3] D. Chiu and R. Jain. Analysis of the increase/decrease algorithms
for congestion avoidance in computer networks.Journal of Computer
Networks, 17:pp. 1–14, 1989.

[4] A. Dhamdhere and C. Dovrolis. Open issues in router buffer sizing.
Computer Communications Review, 36:pp. 87–92, 2006.

[5] A. Dhamdhere, H. Jiang, and C. Dovrolis. Buffer sizing for congested
internet links. InProc. INFOCOM Miami, FL, 2005, 2004.

[6] D.J.Leith and R.N.Shorten. H-TCP protocol for high-speed long-
distance networks. InProc. 2nd Workshop on Protocols for Fast Long
Distance Networks. Argonne, Canada, 2004, 2004.

[7] D.J.Leith and R.N.Shorten. H-TCP protocol for high-speed long-
distance networks. InInternet draft draft-leith-tcp-htcp-02.txt, 2006.

[8] C. Jin, D. X. Wei, and S. H. Low. FAST TCP: Motivation, architecture,
algorithms, performance. InIEEE INFOCOM 2004, 2004.

[9] R. Shorten and D. Leith. On queue provisioning, network efficiency
and the delay-bandwidth product. IEEE Transactions on Networking, to
appear, 2006.

[10] J. Wang, D. X. Wei, and S. H. Low. Modelling and stabilityof FAST
TCP. In Proceedings of INFOCOM, March 2005.

[11] Y.Li, R. Shorten, and D. Leith. Experimental evaluation of tcp protocols
for high-speed networks. IEEE Transactions on Networking,to appear,
2006.

