
67

Decoupling End-to-End Efficiency and Fairness
Control in High Bandwidth-Delay Product Networks

Shudong Jin and Dan Liu
Department of Electrical Engineering and Computer Science

Case Western Reserve University, Cleveland, OH 44106
{shudong.jin, dan.liu}@case.edu

Abstract— To address the inefficiency of standard TCP’s
additive-increase multiplicative-decrease (AIMD) control in high
bandwidth-delay product networks, several end-to-end congestion
control algorithms were proposed. However, these proposals,
for example High-Speed TCP and Scalable TCP, have failed
to decouple efficiency control and fairness control. Often high
aggressiveness (for good efficiency) is achieved at the price of
poor fairness. The proposed Exponential TCP (EXP-TCP) is
an end-to-end algorithm that decouples efficiency control and
fairness control. With EXP-TCP, first the absolute increment of
congestion window sizecwnd grows exponentially, resulting in
O(log(cwnd)) time between two consecutive loss events in steady-
state. This exponential growth provides high efficiency even when
the bandwidth is extremely high. Second, the relative growth
rate of two competing flows is proportional to

√

cwnd, resulting
in the convergence-to-fairness property even with synchronized
losses. EXP-TCP is simple and uses only two parameters:
multiplicative decrease parameter β and exponential increase
parameter γ. We use simulations to evaluate EXP-TCP under
various configurations, including a wide range of bottleneck
bandwidth, a large number of competing flows, mixed long-lived
flows and short Web-like traffic, and sudden increase/decrease of
traffic demand.

I. I NTRODUCTION

Standard TCP uses additive-increase multiplicative-decrease
(AIMD), in which the congestion window sizecwnd is
increased by a constant if one window of packets is acknowl-
edged, and it is halved when a loss event is detected via
triple duplicate acknowledgments. Standard TCP is inefficient
in high bandwidth-delay product (BDP) networks. Because of
its additive-increase rule, standard TCP cannot grab available
bandwidth quickly and leads to poor network utilization. To
address this, many algorithms and protocols are proposed.
Broadly, they fall into two categories: pure end-to-end controls
and router-assisted controls.

Examples of pure end-to-end controls include High-Speed
TCP (HSTCP) [1], Scalable TCP (STCP) [2], BIC TCP [3],
H-TCP [4], and FAST TCP [5]. HSTCP adjusts the AIMD in-
crease and decrease parameters as functions of current conges-
tion window size. When the congestion window size is large,
HSTCP becomes more aggressive. STCP uses multiplicative-
increase multiplicative-decrease (MIMD), and sets the increase
and decrease parameters to a set of fixed values. However,
it was discovered that STCP performs poorly in achieving
fairness between two competing flows [6]. The same problem
exists for HSTCP, and BIC TCP which takes a more complex

approach to probing an appropriate window size. The H-
TCP proposal considers both the elapsed time since the last
loss event, and the measured round-trip time to configure the
window update rules. On the contrary, FAST TCP takes a
radically different, delay-based approach.

Several studies have focused on router-assisted controls [7],
[8]. XCP [7] adjusts its aggressiveness according to the
bandwidth left in the network and the feedback delay. It
also reallocates bandwidth for flows with unfair shares. XCP
solves the unfairness problem by decoupling utilization control
and fairness control. However, XCP can utilize its advantages
only if all routers are upgraded with XCP functionality. This
would require non-trivial standardization and major upgrades
in deployed networks. VCP [8] leverages the two ECN bits,
so that routers can return more precise feedbacks. Althoughit
requires minor changes to the routers, the deployment cost is
not significantly lower than that of XCP.

In this paper, we focus on pure end-to-end algorithms.
We notice that many end-to-end algorithms do not decouple
efficiency control and fairness control, causing difficulties to
achieve both efficiency and fairness. EXP-TCP distinguishes
absolutecongestion window growth andrelative growth be-
tween two flows. By doing so, the increment of conges-
tion window size grows exponentially, while convergence-to-
fairness is still guaranteed. EXP-TCP uses history information
in its increase rule. It is a stateful control scheme, as opposed
to stateless controls such as HSTCP and STCP, which use
only the current congestion window size to determine the
window increment. Yet EXP-TCP is simple and uses only
two parameters, the multiplicative decrease parameter andthe
exponential increase parameter. It is worth noting in EXP-
TCP the slow-start phase is considered as a special stateless
case of the increase rule, where history information does not
exist or is lost. The paper is organized as follows. Section II
describes the EXP-TCP algorithm. To evaluate our proposal,
we use ns-2 simulation using a wide range of bottleneck
bandwidth (2.5Mbps to 10Gbps), a large number of competing
flows (2 to 512 flows), mixed long-lived flows and short Web-
like traffic, and sudden increase/decrease of traffic demand.
Section III describes our simulations and the results.

II. EXP-TCP CONGESTIONCONTROL

A. Decoupling Efficiency Control and Fairness Control

The work on EXP-TCP is motivated by the lack of de-
coupling efficiency and fairness control in previous end-to-

68

end control algorithms. The standard TCP algorithm uses
AIMD control. Efficiency and fairness are achieved by the
combined use of additive increase and multiplicative de-
crease [9]. New proposals such as HSTCP and STCP exploit
the tradeoffs between efficiency and fairness, but have not
been able to decouple efficiency control and fairness con-
trol. For example, Scalable TCP (STCP) is an instance of
multiplicative-increase multiplicative-decrease (MIMD). The
use of the multiplicative-increase rule makes it more scalable
in probing network capacity (thus often good efficiency).
However, MIMD control has been shown to have difficulties to
converge to fairness. HSTCP uses a more aggressive increase
rule when the congestion windowcwnd becomes larger. When
the congestion window is large, the increment per round-
trip time (RTT) is asymptotically at the order ofcwnd0.8 to
achieve the proportional relationshipcwnd ∝ p−0.83, wherep
is packet loss rate. While efficiency is improved, convergence
to fairness is worsened since the increase moves closer to
multiplicative-increase. To summarize, in both HSTCP and
STCP, since efficiency control and fairness control are not
decoupled, improving efficiency often leads to poor fairness,
or vice visa.

To decouple efficiency control and fairness control, we first
observe there are two targets when designing window update
rules. First, to maximize efficiency, we need that theabsolute
or asymptotic aggressiveness of an individual flow be high.
Linear increase is considered not efficient and super-linear
increase (including exponential increase) is desirable. Second,
to improve fairness, we need to set therelativeaggressiveness
of competing flows appropriately. These two objectives should
not be conflicting. Unfortunately, in the previous HSTCP and
STCP protocols, they conflict each other. The current conges-
tion window size determines both the absolute aggressiveness
and the relative aggressiveness. In that sense, both protocols
arestatelesscontrols. This suggests that to decouple efficiency
control and fairness control, we may needstatefulcontrols that
use more than the current congestion window size, e.g., some
history information, to indicate the network condition. Our
EXP-TCP is designed under this guideline.

B. EXP-TCPWindow Increase/Decrease Rules

EXP-TCP modifies the standard AIMD rules to update
congestion window size in the congestion avoidance phase.
It uses a multiplicative-decrease rule. On each loss event,the
window size, in number of packets, is updated according to:

cwnd← (1− β)× cwnd,

whereβ is set to a small value 1/8, resulting in a moderate
decrease and often high network utilization.

The increase rule of EXP-TCP is as follows. On receiving
the acknowledgment for each packet, the congestion window
size is updated according to:

cwnd← cwnd + γ

(

1− cwnd0

cwnd
+

√
cwnd0

cwnd

)

,

whereγ controls the rate of increase and has a small default
value, e.g., 5%. The value ofcwnd0 is set to the congestion

window size just after the last decrease. For example,cwnd0

can be the congestion window size after the slow-start (after
the decrease in the end of slow-start), or the congestion
window size after the previous multiplicative decrease in the
congestion avoidance phase. In summary,cwnd0 denotes the
congestion window size at the beginning of the current con-
gestion avoidance epoch (an epoch stands for the time between
two consecutive decreases in the congestion avoidance phase).
In the same congestion avoidance epoch,cwnd0 is a constant.
We emphasize that the use ofcwnd0 makes EXP-TCP a
stateful control mechanism. In addition, like the AIMD rule,
this seemingly complicated rule is computationally inexpen-
sive, since

√
cwnd0 needs only to be calculated once in the

beginning of each congestion epoch.
We claim this increase rule decouples efficiency control and

fairness control. To understand this, let us first examine the
evolution of congestion window size. We first notice that in
one RTT,cwnd is updated aboutcwnd times. The aggregate
effect is approximately increasing the window size byγ ×
(cwnd− cwnd0 +

√
cwnd0). In general, we can verify via a

sequence of iterations that afteri RTTs, i ≥ 0, the congestion
window sizecwndi is approximately,

cwndi ≈ cwnd0 −
√

cwnd0 + (1 + γ)i ×
√

cwnd0.

From this equation, we can see two properties: (1) the con-
gestion window size grows exponentially over time, and (2)
the growth is also proportional to

√
cwnd0.

TIME

CWND

(1-β)W

W

0

O(log1+γW)

γW0.5/RTT

γβW/RTT

Fig. 1. An illustration of the evolution ofcwnd in EXP-TCP .

The first property is important for EXP-TCP to achieve
efficiency in high BDP networks. Since the absolute window
growth is exponential, the sender can probe available band-
width fast. In steady-state with periodic losses (as shown in
Figure 1), the duration of each congestion epoch is at the order
of O(log W), whereW is the congestion window size when
a loss is detected. For example, whenβ = 1/8 the duration
is approximatelylog(1+γ)

√

W
8 . The growth function becomes

more and more aggressive when no loss event is detected.
The growth rate becomesγβW per RTT whencwnd = W .
If abundant bandwidth is available andcwnd ≫ W , the
asymptotic growth rate isγ × cwnd per RTT and it becomes
the stateless multiplicative increase.

The second property is important for EXP-TCP to achieve
fairness among competing flows using EXP-TCP control. The

69

relative growth rate of two flows is proportional to
√

cwnd0.
Even under the synchronized feedback assumption, flows
using our control still converge to fairness. A sender with
a larger initial congestion window size increases its window
size faster. However, the repeated use of such increase and
multiplicative-decrease ensures the allocation will become
more fair. On the contrary, with the multiplicative-increase
multiplicative-decrease (MIMD) control, the increment ofcon-
gestion window size is proportional tocwnd, and flows with
different congestion window sizes have difficulties to converge
to fairness.

C. Slow-Start and Pacing

Congestion window increase in the EXP-TCP ’s slow-
start phase is considered as a special stateless case of the
increase rule. During the slow-start phase, the state information
cwnd0 does not exist or is lost. The increase rule would
become multiplicative increase. On the acknowledgment of
every packet, the congestion window size is updated as:

cwnd← cwnd + γ.

In high BDP networks, doubling the congestion window
size in one RTT even during the slow-start phase is considered
too aggressive [10]. It may cause thousands of packets to be
dropped. Therefore, it is reasonable to setγ to a small value
whencwnd is large. On the other hand, in standard TCP slow-
start γ should be equal to1.0. We should still double the
congestion window size when it is small. Taking both into
consideration, we slightly modify the above multiplicative-
increase rule and makeγ a function ofcwnd. It decreases from
1.0 whencwnd is small to the default small value eventually
whencwnd is large.

EXP-TCP can be aggressive when it is in slow-start, or
when no loss event is detected for a long period of time
during the congestion avoidance phase.1 For example, a small
default valueγ = 0.05 may still lead to a sizable increase
in cwnd when it is large. Such aggressiveness may cause
burstiness of packets, and may also contribute to the ACK
compression phenomenon [11] which can eventually cause a
reduction in throughput and link utilization. To alleviatethis,
EXP-TCP uses pacing techniques [11], [12].

III. SIMULATIONS

A. Simulation Setup

We use ns-2 simulation to evaluate the performance of EXP-
TCP for a wide range of network configurations. We repeat
most simulation experiments described in [7], [8], except that
we consider only end-to-end control algorithms. It would be
interesting to see if pure end-to-end controls can obtain com-
parable performance. A simple dumbbell network is used. The
bottleneck capacity varies from 2.5Mbps to 10Gbps. Number
of flows in the system varies from 2 to 512. We also consider
a mixture of long flows and Web traffic. The percentage of

1When no loss event is detected for a long period of time,cwnd is increased
well beyondcwnd0. The history informationcwnd0 has little impact, i.e., it
is gradually forgotten. Whencwnd ≫ cwnd0, the control isalmoststateless.

link capacity consumed by Web traffic ranges from 0.2%
to over 50%. In most simulations, we use two-way traffic
except otherwise noted. The reverse path is saturated such
that the flows are under the pressure of ACK compression.
In most simulations, we use different round-trip propagation
delays to eliminate artificial synchronization. However, in
some simulations we need to create synchronization and we
use identical round-trip propagation delay for different flows.

The bottleneck queue size is always set to bandwidth-
delay product. The data packet size is 1000 bytes. We use
RED queues on the bottleneck in most simulations unless
otherwise noted. The RED queue parameters are set to stan-
dard values: minthresh=0.1*BDP, maxthresh=0.3*BDP,
q weight =0.002, maxp=0.1, and the option gentle=ON. We
enable ECN bits, although the performance metrics except loss
rate do not change much. Each simulation runs for at least 120
seconds.

Standard TCP, HSTCP, STCP, and our EXP-TCP are
compared. The Sack1 variant is always used. For
HSTCP, we set all its parameters to the default values
(low window =31, highwindow=83000, highp=0.0000001,
and highdecrease=0.1). For STCP, we also set its parameters
to the default values (cwnd decreases to0.875 × cwnd on
each loss event, and increases by 0.01 on each ACK). For
EXP-TCP , we setγ=0.05 andβ=0.125 for all simulations.
All simulations are very time-consuming (the ns-2 running
time itself is at the order of weeks). We are aware of other
controls such as BIC TCP [3], H-TCP [4], and FAST TCP
[5]. We plan to conduct comprehensive evaluation with the
above described configurations in the future.

B. Impact of Bottleneck Capacity

In this simulation, we vary the bottleneck capacity from
2.5Mbps to 10Gbps. In each direction, there are 16 homo-
geneous flows which use the same control algorithm. We
create side links with different propagation delays, such that
the round-trip propagation delays of the flows are between
60ms to 100ms . Each simulation runs for 120 seconds. We
obtain (1) the bottleneck utilization, which is averaged over
every 200ms, (2) queue size normalized by the queue limit,
which is sampled once every 200ms, and (3) bottleneck drop
rate, which is calculated for every 200ms. The results reported
in Figure 2 are from the last 100 seconds of the simulation
runs. The figure shows EXP-TCP consistently achieves higher
than 95% link utilization. STCP is the second best except
that when the capacity is extremely large, the utilization drops
quickly. Standard TCP obtains the lowest utilization when the
bottleneck capacity is very high. It is also a little surprising to
see HSTCP does not do well. We suspect it can be explained as
follows. The aggressiveness of HSTCP leads to bursty packet
arrivals at the bottleneck queue, so that RED drops more
packets to cause the senders to backoff too frequently. Finally,
all control algorithms results in low queue size due to the use
of RED, but standard TCP results in the lowest loss rate due
to its low aggressiveness. With standard TCP and the capacity
higher than 2.5Gbps, no loss events occur during the final 100
seconds of the simulations.

70

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1 10 100 1000 10000

U
til

iz
at

io
n

Link capacity (Mbps)

TCP utilization
HSTCP utilization

STCP utilization
EXP-TCP utilization

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 1 10 100 1000 10000

A
vg

. q
ue

ue

Link capacity (Mbps)

TCP queue
HSTCP queue

STCP queue
EXP-TCP queue

 1e-08

 1e-07

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1 10 100 1000 10000

B
ot

tle
ne

ck
 d

ro
p

ra
te

Link capacity (Mbps)

TCP drop rate
HSTCP drop rate

STCP drop rate
EXP-TCP drop rate

Fig. 2. Performance of congestion control algorithms when the bottleneck capacity ranges from 2.5Mbps to 10Gbps.

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1 10 100 1000

U
til

iz
at

io
n

Number of flows (Mbps)

TCP utilization
HSTCP utilization

STCP utilization
EXP-TCP utilization

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 1 10 100 1000

A
vg

. q
ue

ue

Number of flows (Mbps)

TCP queue
HSTCP queue

STCP queue
EXP-TCP queue

 1e-07

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1 10 100 1000

B
ot

tle
ne

ck
 d

ro
p

ra
te

Number of flows (Mbps)

TCP drop rate
HSTCP drop rate

STCP drop rate
EXP-TCP drop rate

Fig. 3. Performance of congestion control algorithms when the number of long-lived flows ranges from 2 to 512.

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0.001 0.01 0.1 1

U
til

iz
at

io
n

Aggregate Web traffic/ BW

TCP utilization
HSTCP utilization

STCP utilization
EXP-TCP utilization

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.001 0.01 0.1 1

A
vg

. q
ue

ue

Aggregate Web traffic/ BW

TCP queue
HSTCP queue

STCP queue
EXP-TCP queue

 1e-07

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 0.001 0.01 0.1 1

B
ot

tle
ne

ck
 d

ro
p

ra
te

Aggregate Web traffic/ BW

TCP drop rate
HSTCP drop rate

STCP drop rate
EXP-TCP drop rate

Fig. 4. Performance of congestion control algorithms when background Web-like flows consumes between 0.2% and 51.2% of the bottleneck capacity.

C. Impact of Number of Flows

In this simulation, we fix the bottleneck capacity to
500Mbps, but the number of homogeneous flows in each
direction is varied from 2 to 512. The other configurations are
the same as the previous simulation. Again we observe that
EXP-TCP results in the highest bottleneck utilization, while
both standard TCP and HSTCP are behind. Standard TCP
does poorly when there are only a small number of flows,
confirming the inability of standard TCP to grab the abundant
bandwidth.

D. Impact of Web Traffic

In this simulation, we use 16 homogeneous flows in each
direction and fix the bottleneck capacity to 500Mbps. The
other configurations are the same as the previous two simu-
lations. In addition, we introduce short Web-like flows. Their
transfer size follows a Pareto distribution, with a mean of 30
packets and shape parameter equal to 1.35. Figure 4 plots the
bottleneck utilization, queue size, and drop rate. It againshows
the robustness of EXP-TCP in obtaining better performance
compared to the others.

E. Convergence to Fairness

In this simulation, we examine the convergence behavior of
various algorithms. We set the bottleneck capacity to 1Gbps.

Three homogeneous flows will compete for the bandwidth in
one direction but there is not other data flows in the other
direction. After the first flow starts at time 0, the second
flow joins it 100 seconds later and the third flow joins them
another 100 seconds later. We first create a rather synchronized
scenario. The flows have an identical round-trip propagation
delay (40ms), and the bottleneck uses the DropTail policy.
Then we create a less synchronized scenario. The round-trip
propagation delay varies slightly by 10%, and the bottleneck
uses RED queue management. Figure 5 shows, in the DropTail
case, the flow throughputs (each point is an average value in
200ms) when different algorithms are used. Figure 6 shows
the results with RED queues.

We observe that in the DropTail case, STCP performs
poorly. Two flows are starved while the first flow does not
give up much bandwidth. This is simply because of the
MIMD control. The other algorithms all show convergence
to fairness, with EXP-TCP performing noticeably better. In
the RED queue case, we find STCP still does not converge
to fairness. Standard TCP exhibits a large fluctuation of con-
gestion window size. Nevertheless it convergence to fairness
with AIMD control. Although HSTCP shows convergence to
fairness, it appears convergence is very slow even with RED.
EXP-TCP allows a quicker convergence. Finally, we suspect
that both HSTCP and EXP-TCP may have the RTT-unfairness
problem [6]. The flows have slightly different round-trip

71

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 50 100 150 200 250 300

F
lo

w
 T

hr
ou

gh
pu

t (
M

bp
s)

Time (seconds)

TCP flow 1
TCP flow 2
TCP flow 3

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 50 100 150 200 250 300

F
lo

w
 T

hr
ou

gh
pu

t (
M

bp
s)

Time (seconds)

HSTCP flow 1
HSTCP flow 2
HSTCP flow 3

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 50 100 150 200 250 300

F
lo

w
 T

hr
ou

gh
pu

t (
M

bp
s)

Time (seconds)

STCP flow 1
STCP flow 2
STCP flow 3

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 50 100 150 200 250 300

F
lo

w
 T

hr
ou

gh
pu

t (
M

bp
s)

Time (seconds)

EXP-TCP flow 1
EXP-TCP flow 2
EXP-TCP flow 3

Fig. 5. Comparison of convergence-to-fairness of congestion control algorithms with DropTail queues.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 50 100 150 200 250 300

F
lo

w
 T

hr
ou

gh
pu

t (
M

bp
s)

Time (seconds)

TCP flow 1
TCP flow 2
TCP flow 3

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 50 100 150 200 250 300

F
lo

w
 T

hr
ou

gh
pu

t (
M

bp
s)

Time (seconds)

HSTCP flow 1
HSTCP flow 2
HSTCP flow 3

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 50 100 150 200 250 300

F
lo

w
 T

hr
ou

gh
pu

t (
M

bp
s)

Time (seconds)

STCP flow 1
STCP flow 2
STCP flow 3

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 50 100 150 200 250 300

F
lo

w
 T

hr
ou

gh
pu

t (
M

bp
s)

Time (seconds)

EXP-TCP flow 1
EXP-TCP flow 2
EXP-TCP flow 3

Fig. 6. Comparison of convergence-to-fairness of congestion control algorithms with RED queues.

 0

 50

 100

 150

 200

 0 20 40 60 80 100 120 140 160

F
lo

w
 T

hr
ou

gh
pu

t (
M

bp
s)

Time (seconds)

TCP flow 1
TCP flow 2
TCP flow 3
TCP flow 4
TCP flow 5

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160

B
ot

tle
ne

ck
 U

til
iz

at
io

n

Time (seconds)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160
B

ot
tle

ne
ck

 Q
ue

ue
 (

%
 o

f q
ue

ue
 s

iz
e)

Time (seconds)

 0

 50

 100

 150

 200

 0 20 40 60 80 100 120 140 160

F
lo

w
 T

hr
ou

gh
pu

t (
M

bp
s)

Time (seconds)

HSTCP flow 1
HSTCP flow 2
HSTCP flow 3
HSTCP flow 4
HSTCP flow 5

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160

B
ot

tle
ne

ck
 U

til
iz

at
io

n

Time (seconds)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160

B
ot

tle
ne

ck
 Q

ue
ue

 (
%

 o
f q

ue
ue

 s
iz

e)

Time (seconds)

 0

 50

 100

 150

 200

 0 20 40 60 80 100 120 140 160

F
lo

w
 T

hr
ou

gh
pu

t (
M

bp
s)

Time (seconds)

STCP flow 1
STCP flow 2
STCP flow 3
STCP flow 4
STCP flow 5

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160

B
ot

tle
ne

ck
 U

til
iz

at
io

n

Time (seconds)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160

B
ot

tle
ne

ck
 Q

ue
ue

 (
%

 o
f q

ue
ue

 s
iz

e)

Time (seconds)

 0

 50

 100

 150

 200

 0 20 40 60 80 100 120 140 160

F
lo

w
 T

hr
ou

gh
pu

t (
M

bp
s)

Time (seconds)

EXP-TCP flow 1
EXP-TCP flow 2
EXP-TCP flow 3
EXP-TCP flow 4
EXP-TCP flow 5

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160

B
ot

tle
ne

ck
 U

til
iz

at
io

n

Time (seconds)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140 160

B
ot

tle
ne

ck
 Q

ue
ue

 (
%

 o
f q

ue
ue

 s
iz

e)

Time (seconds)

Fig. 7. EXP-TCP shows the quickest response to the sudden changes of traffic demands and results in the highest utilization.

72

propagation delays, but they do not converge to the same
throughput.

F. Response to Sudden Changes

In this simulation, we examine the performance of the
algorithms as traffic demands and dynamics vary considerably.
We start the simulation with 10 long-lived flows in each
direction. Their round-trip propagation delays vary between
75ms and 85ms. The bottleneck capacity is 1Gbps. One
hundred seconds later, 40 more flows join in the forward
direction. These flows will stay in the system for 100 seconds,
and then suddenly leave. Figure 7 shows for each congestion
control algorithm, the throughputs of the first 5 original flows,
the bottleneck utilization, and the queue size. These figures
show that standard TCP (three plots in the top row of the
figure) is the slowest to respond to the increased availability
of bandwidth, and it cannot reach full utilization at the endof
the simulation run. EXP-TCP (the bottom row of the figure)
ramps up the throughput and utilization quickly. Although it
is not as aggressive as HSTCP and STCP in steady-state, it
grows more aggressive when abundant bandwidth is available.

IV. CONCLUSIONS ANDFUTURE WORK

We have shown that it is possible to decouple efficiency
control and fairness control in end-to-end congestion control
algorithms. In EXP-TCP efficiency is obtained by allowing
exponential growth of the congestion window size, while fair-
ness is obtained by allowing a reasonable relative growth rate
among competing flows. Our simulations confirm the robust-
ness of EXP-TCP with a wide range of network configurations.
Our work also suggests that end-to-end congestion control
algorithms, if properly designed, can perform reasonably well
in achieving high network utilization and low queuing delay
with RED queue management. Our future work includes, (1)
a comprehensive evaluation of EXP-TCP under more complex
network configurations, e.g., multiple bottlenecks and a wide
range of RTTs, (2) providing RTT-fairness, (3) comparisons
with other end-to-end algorithms, e.g. FAST TCP, BIC TCP,
and H-TCP. TCP-friendliness of EXP-TCP is also an important
issue. For example, the Appendix shows it can be TCP-friendly
when cwnd is small, and a comprehensive evaluation is a
possible future work.

ACKNOWLEDGMENT

The authors would like to thank Mark Allman for his
discussions with us and his comments on many aspects of
TCP congestion control.

REFERENCES

[1] S. Floyd, “HighSpeed TCP for large congestion windows,”
INTERNET ENGINEERING TASK FORCE, RFC 3649, De-
cember 2003.

[2] T. Kelly, “Scalable TCP: Improving performance in high-
speed wide area networks,”SIGCOMM Comput. Commun. Rev.,
vol. 33, no. 2, pp. 83–91, 2003.

[3] L. Xu, K. Harfoush, and I. Rhee, “Binary increase congestion
control for fast long-distance networks,” inProceedings of IEEE
INFOCOM, March 2004.

[4] R. N. Shorten and D. J. Leith, “H-TCP: TCP for high-speed and
long-distance networks,” inProceedings of International Work-
shop on Protocols for Fast Long-Distance Networks (PFLDnet),
February 2004.

[5] C. Jin, D. X. Wei, and S. H. Low, “FAST TCP: motivation,
architecture, algorithms, performance,” inProceedings of IEEE
INFOCOM, March 2004.

[6] T. Yee, D. Leith, and R. Shorten, “Experimental evaluation of
high-speed congestion control protocols,”IEEE/ACM Trans. on
Networking, to appear.

[7] D. Katabi, M. Handley, and C. Rohrs, “Congestion control
for high bandwidth-delay product networks,” inProceedings of
ACM SIGCOMM, August 2002.

[8] Y. Xia, L. Subramanian, I. Stoica, and S. Kalyanaraman, “One
more bit is enough,” inProceedings of ACM SIGCOMM, August
2005.

[9] D.-M. Chiu and R. Jain, “Analysis of the increase and decrease
algorithms for congestion avoidance in computer networks,”
Computer Networks and ISDN Systems, vol. 17, pp. 1–14, 1989.

[10] S. Floyd, “Limited slow-start for TCP with large congestion
windows,” INTERNET ENGINEERING TASK FORCE, RFC
3742, March 2004.

[11] L. Zhang, S. Shenker, and D. Clark, “Observations on the
dynamics of a congestion control algorithm: the effects of two-
way traffic,” in Proceedings of ACM SIGCOMM, September
1991.

[12] A. Aggarwal, S. Savage, and T. Anderson, “Understanding
the performance of TCP pacing,” inProceedings of IEEE
INFOCOM, March 2000.

[13] S. Floyd, M. Handley, and J. Padhye, “A compari-
son of equation-based and AIMD congestion control.
http://www.aciri.org/floyd/papers.html,” May 2000.

[14] Y. R. Yang and S. S. Lam, “General AIMD congestion control,”
in Proceedings of IEEE ICNP, November 2000.

APPENDIX: TCP-FRIENDLY EXP-TCP

EXP-TCP is generally not TCP friendly since it is much
more aggressive when congestion window sizecwnd is large.
On the other hand, we can make it TCP-friendly whencwnd is
small. The increase rule of EXP-TCP in Section II may cause
it to be less competitive against TCP flows. Assumeβ = 1/8
is the multiplicative decrease parameter. A sender needs to
increasecwnd by 1/5 in order to grab approximately the same
amount of bandwidth as a standard TCP sender does [13],
[14]. EXP-TCP on the other hand increasescwnd more slowly
when cwnd0 is small. For example, whenγ = 0.05 and
cwnd0 = 4, cwnd is increased by merely 0.5 during the first
5 RTTs. For this reason, we slightly modify the increase rule
whencwnd0 < 16 such that, on the acknowledgment of each
packet,cwnd is updated according to:

cwnd← cwnd + γ

(

1− cwnd0

cwnd
+

4

cwnd

)

,

and setγ = 0.05. This modification causescwnd to be
increased by 1/5 in the first RTT, and slightly faster in the next
a few RTTs. Meanwhile, this control still guarantees efficiency
and convergence to fairness.

