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Abstract—It has been recognized that TCP throughput 
deteriorates in high-speed networks with large bandwidth-delay 
product, and new congestion control algorithms have been 
proposed to address such deterioration. Assuming that the 
proposed protocols would be in general used in the Internet, it is 
imperative to study the interaction among flows of different 
protocols, in addition to the interaction among flows using the 
same protocol. In this paper, we discuss a method of assessing the 
interaction among different protocols.  By applying the same 
experiment setup, including network configuration, flow 
parameters, and workload of each flow, to multiple experiment 
runs for the different protocols, we can assess flow-by-flow and 
file-by-file behavior of different protocols. We provide some 
numerical results in networks with multiple bottlenecks, a large 
number of short-lived and long-lived flows, and variety of RTTs. 
The results show that, while all high-speed TCPs are effective in 
improving efficiency, they exhibit different detailed 
characteristics. When compared to previous schemes, CUBIC, 
Compound-TCP, and TCP-AdaptiveReno improve, to varying 
degrees, RTT-fairness and Reno-friendliness.  Our results also 
show that, due to slow-start behavior of short flows, delay-based 
control is not very effective in improving RTT-fairness as 
expected. Based on the insight above, we have modified the 
delay-based control part of TCP-AdaptiveReno and the results 
show its highly balanced efficiency, friendliness, and fairness. 

I. INTRODUCTION 
CP has been designed for networks where a packet loss is 
recognized as a congestion signal and for link speeds lower 

than what is possible today. It is well known that TCP 
performance suffers in fast and long-distance networks with 
non-negligible random losses. To improve the performance of 
TCP in such networks, a number of new TCP variants, 
including High Speed TCP [1], Scalable TCP [2],  FAST [3], 
BIC [4], CUBIC [5], Hamilton-TCP [6], Compound-TCP [19], 
TCP-Westwood [7,8], and TCP-AdaptiveReno [9], to mention 
a few, have been proposed. 

Assuming that these new protocols are likely to be deployed 
on the Internet, rather than used in private networks, it is 
imperative to study the interactions among flows of different 
protocols, in addition to the interactions of flows using the 
same protocol. TCP-Reno has been successful for more than a 
decade and it is still widely used. Therefore, when new 
protocols coexist with Reno, modest negative impacts on 
TCP-Reno flows performance may be acceptable, but severe 
damage to TCP-Reno flows would not be tolerated. 

A framework for evaluating congestion control algorithms is 
presented in [10]. Also, a proposal for a standard benchmark 
suite is given in [11]. There are also a number of comparative 
evaluations of the high-speed protocols [12-15,21]. In these 

papers, the effects of RTT diversity, coexisting short-lived and 
long-lived flows, and so on, have been studied. However, there 
are few papers that extensively study the behavior of 
high-speed protocols in networks with multiple bottlenecks, 
including an evaluation of the coexistence of high speed 
protocols with legacy protocols. Over paths with multiple 
bottleneck links, fairness among flows traversing such paths 
needs to be carefully evaluated. For example, fairness of flows 
having diverse RTTs, fairness of flows having different hop 
counts, or friendliness of different protocols under such 
conditions needs to be investigated. In such a complex network 
environment, to make the evaluations trustworthy and the 
results for different protocols comparable, the conditions of 
each experiment must be recreated with minimal change for the 
various protocols under study. 

In this paper, we discuss a method for assessing interactions 
among different transport protocols. Three or more sets of 
identical experiments except for the congestion control 
algorithm used by each flow are run. Across these runs, 
network topology, flows parameters, and workload parameters 
are kept identical. To this end, our simulations rely on a 
pre-generated set of network configurations, flows, and a 
workload to be transferred using the TCP protocols. The 
pre-generated environment is then used in our three set of 
simulation runs: (1) all flows use TCP-Reno, say year 2005 
case, (2) half of the flows use a high-speed protocol and the 
remaining half use TCP-Reno, say year  2007 case, and (3) all 
flows use high-speed protocol, say year 2010 case. 

In this paper, we analyze statistic behavior of large number 
of flows coexisting in complex network topologies. We have 
executed the proposed method using the NS2 simulator and 
compared various high-speed protocols, including loss-based, 
delay-based, and combined loss-based and delay-based 
methods. Regarding delay-based control, we confirmed that its 
RTT-fairness is not as good as expected. Due to slow-start 
behavior of short-lived flows, RTT often jumps up suddenly 
and cause a packet loss, which prevents delay-based control 
from staying in steady state equilibrium. Based on this 
observation, we modified the delay-based control part of 
TCP-AdaptiveReno to improve its RTT-fairness during 
transient state, as well as in equilibrium state. 

In the sequel, we provide some numerical results for 
networks with multiple bottlenecks, a large number of 
short-lived and long-lived flows, and RTT diversity, and 
discuss the different behavior of a set of high-speed protocols. 
We especially focus on friendliness to Reno, RTT-fairness, and 
efficiency in multi-hop environment. 
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II. TCP-ADAPTIVERENO 
TCP-AdaptiveReno, or TCP-AReno, has been proposed for 

higher efficiency in fast long-distance network while still 
maintaining friendliness to Reno. TCP-AReno is an extension 
of TCP-Westwood [8]. During congestion avoidance, 
congestion window size W is adaptively increased based on 
delay measurement. In addition, TCP-AReno also maintains a 
window size WRENO that is increased by 1MSS per RTT like 
Reno. When W becomes smaller than WRENO, W is increased to 
WRENO. The following model such window size update: 

 
 
 
 
 

where c is a delay-based congestion estimation, and c = 
(RTT-RTTMIN) / (RTTCONG - RTTMIN). RTTCONG and RTTMIN are 
the RTT value when a packet loss is expected and minimum 
RTT is observed. B and R are the estimated bottleneck link 
capacity, and the sending rate (=W/RTT), respectively. α and β 
are control parameter for window increase and decrease, 
respectively. The window size update functions above 
implement a modified delay-based control method with the 
following rational: 

1) RTT-fairness in delay-based control is ensured when the 
control is in equilibrium. However, the equilibrium is easily 
broken by slow start behavior of other flows. Thus, to improve 
RTT-fairness during transient state, RTT is multiplied on both 
first and second term, implicitly and explicitly, compared to 
regular delay-based control. With this change, the congestion 
window increase rate is not proportional to the number of round 
trip times but proportional to time elapsed. 

2) To maintain friendliness to Reno, inflated congestion 
window size has to be quickly reduced down to a Reno 
compatible size whenever RTT increases.  To ensure the 
behavior, we put ec on the first term and Wc on the second term. 
Thus, as soon as the path is being congested and queues are 
building up, W is quickly decreased down to WRENO. 

3) B/R is multiplied on the first term to improve scalability to 
very high-speed networks. If current sending rate is less than 
the estimated bottleneck link capacity, congestion window is 
increased faster. 

Note that in an equilibrium state, when α(B/W)RTTec=β
Wc, we have: 

  
 
Thus, we can confirm that steady state throughput under 
delay-based control is equal for all flows regardless of RTT. 

Upon a packet loss, we tune congestion reduction as in 
TCPW-BBE and reset WRENO, as follows: 

 
 

This means that congestion window size is halved like Reno 
when packet loss happens during congestion, i.e. c=1. On the 
other hand, if packet loss happens while the congestion 

estimate is low, the reduction is mitigated to improve efficiency 
in networks with non-negligible random losses. 

III. COMPARATIVE EVALUATION METHOD 

A. Configuration Generation 
To fairly evaluate TCP protocols, we repeat multiple sets of 

experiments with the same configuration for different protocols. 
We rely on an experiment scenario generator, consisting of a 
topology generator, a flows generator, and a workload 
generator, which are implemented in a set of tcl scripts for NS2 
simulator. Below we briefly describe the three generators. 

 Topology generator 
As shown in Fig. 1, the topology generator builds a file 

describing a set of links and nodes with their attributes such as 
capacity and propagation delay. Some links may be configured 
as wireless links with random packet losses. The topology may 
be a simple dumbbell topology, but more generally, it will 
include random network, tree, parking-lot, transit-stub, and 
artificially generated Internet routers topologies. 

 Flow generator 
This module generates a set of flows. Flows are created from 

randomly chosen source to randomly chosen destination unless 
they are disconnected. In a client-server type application, a 
small number of intermediate nodes are selected to connect the 
server and a large number of edge nodes are selected to connect 
the client hosts. In a peer-to-peer application, source and 
destination nodes are connected to any of the edge nodes. 

The flows may be divided to run under two or more protocols. 
Flows in the same group use the same congestion control 
algorithm, but different groups may use different algorithms. 

 Workload generator 
The workload generator generates a set of data chunks 

characterized by file size and its initiation time. These files are 
pre-generated for each flow and the same set of files is supplied 
to each run to ensure repeated workload among different runs. 

To evaluate the important effects of short-lived traffic, the 
workload may be set up as an appropriate mix of short-lived 
and long-lived flows. For short-lived flows, Internet file size 
distribution studied in [17], or Pareto distribution may be used. 
For long-lived flows, infinite file sizes may be used, but rather 
large (media) files may also be used because a large portion of 
the Internet traffic is occupied by large P2P file sharing. In the 

),max(
/1

/

RENO

RENO

c

WWW
WW

WWcRTTe
R
BW

=

=+

⎟
⎠
⎞

⎜
⎝
⎛ −=+ βα

RENORENO W
c

WW
c

W
+

=
+

=
1

1,
1

1

c
eBR

c

β
α

=

Fig. 1: Comparative evaluation of high-speed 

Topology generator Flow generator Work-load generator

Link A-B BW Delay
…

A B
…

C D
…

GroupA GroupB
Time : size
…

Time : size
…

Time : size
…

Time : size
…

Random, tree, 
parking-lot, etc…

Client-server, 
peer-to-peer, etc…

Heavy-tail (Pareto),
Ling-lived

Simulation run 1 Simulation run 2

Compare

Reno+Reno Reno+HS HS+HS

Simulation run 3



 

 - 93 -

later case, a time varying number of long-lived flows may be 
specified to create changes in the network load, and thus agility 
and stability of congestion control algorithms may be tested. 

B. Experiments 
The generated experiment scenario is exercised in three or 

more sets of runs applying different protocol to each flow 
group. Thus, we can compare the behavior of the same flow 
when it uses Reno and when it uses a high-speed protocol, and 
assess in what condition performance of a flow is improved by 
the high-speed protocols. We can also compare the behavior of 
a Reno flow when it coexists with other Reno flows and when it 
coexists with a high-speed flow. We assess which high-speed 
protocol is friendly to such Reno flows, and in what condition a 
Reno flow is degraded.  

IV. NUMERICAL RESULTS 

A. Network Model and Traffic Model 
As shown in Fig. 2, we used the parking-lot topology as a 

good representative of the case of multiple bottleneck links. 
There are 5 routers and 4 uni-directional backbone links whose 
capacity is 1Gbps. Capacity of access links between routers and 
terminals is also 1Gbps. Round trip propagation delay (RTD) 
of each link is exponentially distributed and the average of 
RTDs is 15msec. The average flow RTD is around 130msec 
and about 60% of flows have RTD more than 100msec, a 
reasonable number since the measurement results in [18] 
pointed out that 40% of actual Internet flows have RTT more 
than 100msec. Since high-speed routers tend to have smaller 
buffer sizes than the bandwidth delay product, the buffer size is 
set at 2MB, which corresponds to 16% of bandwidth delay 
product for 100msec RTD. 

We generated a large number of short-lived and long-lived 
flows. The source and destination terminals are connected to 
randomly selected nodes. File size distribution of short-lived 
flows is Pareto with 1MB average and its inter-arrival time is 
exponentially distributed with 1sec average. The number of 
short-lived flows is 100; thus there is 800Mbps traffic load in 
total over the 8 backbone links. For long-lived flows, the file 
size is fixed at 4.7GB, which corresponds to 1 video DVD, and 
its inter-arrival time is 2 min. 

We compared RENO, High-speed TCP (HSTCP), Scalable 
TCP, BIC, CUBIC, Hamilton-TCP, Compound-TCP, 
TCP-Vegas and TCP-AdaptiveReno. We used a patch that 

provides Linux TCP congestion control algorithms on NS2 
simulator [20]. Thus the results loosely follow their Linux TCP 
implementation, rather than the original NS2 codes of each 
protocol. We have to note that, it is reported that CUBIC 
behavior using this patch is somewhat different from its Linux 
behavior, and indeed we got some unexpectedly poor 
performance. For this reason, we removed CUBIC results from 
this paper until the patch behavior in the future coincides with 
the Linux implementation for CUBIC. 

We tested three cases 1) all flows use Reno, 2) half of the 
flows use Reno and the rest of the flows use the high-speed 
protocol, and 3) all flows use the high-speed protocol. We 
generated 12 different configuration sets, which are run for 10 
minutes each. 

B. Efficiency Improvement 
In this section, we first confirm the performance 

improvement of high-speed protocols. Then, we investigate 
flow-by-flow behavior and discuss the characteristics of 
high-speed protocols. The following results are obtained with 
all flows using the high speed protocol. 

Fig. 3 shows the average utilization of 8 backbone links. The 
number of long-lived flows is set to 1, 10, and 40, successively. 
As shown in this figure, all high-speed protocols improve the 
average link utilization especially when traffic load is light. 
Compound-TCP achieves slightly lower utilization than others, 
but the difference is not that significant. Vegas, as it is not 
designed as a high-speed version, shows the lowest efficiency, 
even worse than Reno. This appears to be due to the frequent 
slow start behavior of short-lived flows, the presence of small 
buffer sizes, as well as multiple bottleneck links. In such 
environment there are lots of packet losses even when the link 
is not fully utilized and thus delay-based protocol like Vegas 
tend to result in poor performance.  

Although all high-speed protocols perform well in terms of 
average link utilization, they are very different in detailed 
behaviors. Figure 4 focuses on the per-flow throughput 
improvement achieved by the high-speed protocols. The 
number of long-lived flow is 40; and thus we have fairly loaded 
paths. The improvement is defined here as: 

Relative throughput of flow i = Ti
HS+HS / Ti

Reno+Reno 
where Ti

HS+HS and Ti
Reno+Reno are the throughput of flow i in the 

third run where all flow use high-speed protocols and the first 
run where all flow use Reno, respectively. In Fig. 4, the relative 
throughput of each flow is shown for various base RTT on 
x-axis. In Fig.5, relative throughput of each flow is plotted 
against the number of hops the flow traverses on x-axis.  

Figures 4 and 5 illustrate the different character of the 
high-speed protocols. Under protocols having progressive 
congestion window increase like Scalable-TCP, flows with 
short RTT and short hop count quickly increase their 
throughput relative to the longer RTT flows, and occupy the 
links capacities. As a result, there would be no space for long 
RTT flows when they arise. On the other hand, newer protocols, 
like Hamilton-TCP, Compound-TCP and TCP-AReno, exhibit 
different behavior. They improve throughput of long RTT Fig. 2: Network model 
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flows relative to shorter ones. That is they improve the 
throughput of long RTT flows that suffer poor performance 
under Reno. Regarding Compound-TCP, long RTT flows, 
whose behavior is dominated by its delay-based function, do 
not perform very well. This is because such flows takes longer 
time to reach steady state, and as it is said for Vegas, the 
equilibrium can easily be broken due to slow start behavior of 
short-lived flows. Among these high-speed protocols, 
TCP-AReno has the best RTT-fairness. It has little 
performance improvement for flows whose RTT is less than 
100msec, but it greatly improves performance of long RTT 
flows. Delay-based behavior of TCP-AReno is designed so that 
long RTT flows can increase congestion window faster. 

As shown in Fig. 5, TCP-AReno and Hamilton-TCP are also 

good at improving performance of flows traversing multiple 
bottleneck links. We have to note here that, multi-hop flows 
consume more network resource than single-hop flows, thus 
allocating large bandwidth to multi-hop flows means 
inefficient resource usage. If average throughput is the concern, 
we would allocate as much resources as possible to single 
hop-flows. But doing so would result in lower fairness. In this 
paper, we do not address such trade-off between efficiency and 
fairness. 

C. Fairness among flows 
Figure 6 shows per-flow throughput in heavily loaded 

condition as a function of RTT. Scalable-TCP gets highest 
throughput for short RTT flows and lowest throughput for long 
RTT flows, i.e. its RTT-fairness is significantly worse than 
even Reno. BIC, HS-TCP, and Compound-TCP improve 
throughput regard less of RTT but their RTT-fairness is similar 
to that of Reno. Since flows with varying RTT are competing at 
multiple bottleneck links and slow start behavior of short-lived 
flows results in frequent and unpredictable packet loss, it is not 
easy for high-speed protocols to behave ideally as they are 
designed in terms of fairness and friendliness. Only 
TCP-AReno and Hamilton-TCP can improve RTT-fairness in 
such significantly challenging conditions. Although they have 
little throughput improvement for short RTT flows as expected, 
throughput of long RTT flows is significantly improved. The 
throughput ratio of 30msec RTT flow and 300msec RTT flow 
of Reno, HSTCP, and Compound is 9.7, 9.7, 11.3, and 7.3, 
respectively, while that of Scalable TCP is 20.3. Regarding 
Hamilton-TCP and TCP-AReno, the ratio is only 5.5 and 4.9, 
respectively. 

To investigate fairness among flows a bit closer, we plot 
cumulative distribution of per-flow throughput in Fig. 7. As it 
is expected from the above results, Scalable-TCP has widest 
distribution of per-flow throughput, while Hamilton-TCP and 
TCP-AReno has small variation. For example, the fraction of 
flows achieving throughput less than 20Mbps is 36%, 27%, 
20%, 18%, 16%, 6%, and 4%, for Scalable, Vegas, Compound, 
BIC, HS-TCP, Hamilton and AReno. On the other hand, 37% 
of Scalable flows, 32% of BIC flows, 29% of HSTCP flows, 
22% of Compound flows, 20% of Hamilton flows, 18% of 
AReno flows, 12% of Reno flows and 11% of Vegas flows 
have throughput more than 200Mbps. 

If the network is lightly loaded, on the other hand, we 
observe different results. Although we do not show figures in 
this paper due to space limitation, we have confirmed that all 
high-speed protocols have good RTT-fairness property, as well 
as achieve high throughput. When the load is low, even 
Scalable-TCP has significant improvement on the throughput 
of long RTT flows. Since long RTT flows and short RTT flows 
are not competing at backbone links and thus long RTT flows 
are not disturbed by short RTT flows, long RTT flows achieve 
high throughput as the high speed protocols are designed. 

D. Friendliness to TCP-Reno 
We examine the extent of Reno throughput degradation due 

Fig. 3: Average link utilization 
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to the introduction of a coexisting high-speed protocol. We run 
a first simulation set with all Reno flows, and then run a second 
simulation set in which half of the Reno flows are replaced by 

the high-speed protocols. Friendliness of high-speed protocols 
to Reno is evaluated by the throughput degradation of Reno 
flows due to such replacement. Thus, the degradation is defined 
here as: 

Throughput degradation of flow i = 
TReno_i

HS+Reno / TReno_i
Reno+Reno 

where TReno_i
HS+Reno is the throughput of Reno flow i in the 

second run in which half of the flows use high-speed protocols. 
TReno_i

Reno+Reno is the throughput of Reno flow i in the first run 
where all flow use Reno. 

Figure 8 shows throughput degradation of Reno flows and 
the lines are labeled by coexisting protocols. The number of 
long-lived flows is 40 thus the network is fairly loaded. There 
are three groups of high-speed protocols. Compound-TCP and 
AReno are most friendly to coexisting Reno flows because 
their delay-based control is not in effect in such congested 
condition and thus they behave just like Reno. They degrade 
the throughput of coexisting short lived Reno flows by roughly 
25%. Due to the improved overall network utilization, the 
number of congested link increases. Longer flows traversing 
multiple links are more likely to encounter multiple congested 
links, and thus longer flows experience more degradation 
especially due to coexisting AReno flows. The second group 
consists of HS-TCP, Hamilton-TCP and BIC. They roughly 
halve the throughput of coexisting Reno flows. Scalable TCP 
severely degrades Reno throughput. Comparing to the case 
where Reno flows compete with other Reno flows, throughput 
of these Reno flows are degraded by 60%-85%, depending on 
RTT, when they coexists with Scalable-TCP flows. Since 
Scalable-TCP aggressively increases congestion window very 
quickly, flows experience more packet losses which 
significantly damages Reno flows. 

On the other hand, when the network is lightly loaded, 
high-speed protocols are sufficiently friendly to Reno flows 
because, off cause, there is less contention in the network. 
Although graphs are not shown in this paper, we found that 
throughput degradation of Reno flows is less than 20% 
regardless of RTT when the number of long-lived flows is 10.  

E. File transfer time of short-lived flows 
Figure 9 and 10 show average file transfer times of 

high-speed flows and Reno flows. The transfer time starts when 
the sender sends out the first packet and ends when the sender 
receives an acknowledgement for its last packet. As shown in 
Fig. 11, transfer of smaller files, e.g. less than 1MB, is 
completed during slow-start and there is no significant 
difference among the different protocols. On the other hand, 
transfer time of mid-sized files, for which congestion control is 
in effect, is improved by AReno, Hamilton, and BIC. Scalable 
TCP is not effective for mid-sized files because of its 
aggressive behavior described above. Its aggressive behavior 
increases packet loss probability and only a single packet loss 
affects much for these small and mid-sized transfers. 

Figure 10 shows file transfer times when half of the flows 
use a high-speed protocol. The lines are labeled by the 
coexisting high-speed protocols. Except in the case of the 
aggressive behavior of Scalable-TCP resulting in increasing 
file transfer time of coexisting Reno flow, other high-speed 
TCPs are do not seriously degrade Reno throughput. 

V. CONCLUSION 
In this paper, we discussed a method of assessing 

interactions among different protocols. Using a pre-generated 
set of configurations repeatedly for different mixes of protocols, 
we can assess flow-by-flow and file-by-file behavior under 
different protocols. We provided simulation results of networks 
with multiple bottlenecks, a large number of short-lived and 
long-lived flows, and variety of RTTs. 

The results generally show the effectiveness of most 
high-speed TCPs, and their differing characteristics in per-flow 
behavior. Earlier protocols like High Speed TCP and Scalable 
TCP achieve good efficiency and average throughput. The 
more recent generation of protocols improve RTT-fairness and 
friendliness to coexisting Reno flows. Scalable TCP shows 
degraded RTT-fairness and damage to coexisting Reno flows, 
especially in loaded networks. BIC has very similar character 
with High Speed TCP but has slightly improved per-flow 
throughput. In contrast, newer ones like Hamilton-TCP, 
Compound TCP and TCP-AReno have greatly improved 
fairness and friendliness. They achieve link utilization as high 
as the previous generation, but improvement of average 
per-flow throughput is limited because they allocate larger 
bandwidth to flows using multiple links and consume more 

Fig. 6: RTT v.s. per-flow throughput (40 flows) 
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network resources. Hamilton-TCP has good fairness among 

flows but its friendliness to coexisting long-lived Reno flows 
is comparable to previous generation protocols. While 
Compound-TCP has best friendliness to Reno even in highly 
loaded conditions, its throughput improvement is limited 
especially for long RTT flows. TCP-AReno maintains high 
link utilization and has best RTT-fairness, while maintaining 
good friendliness to Reno. 

Future work related to this coexistence study would cover 
other prominent protocols like FAST, CUBIC, TCP-Libra, and 
variants of TCP Westwood, as well as expand the range of 

parameters used in this study. More importantly, we would like 
to carry measurements of actual implementations on emulated 
or existing Internet II paths to confirm the simulation results. 
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Fig. 8: Throughput degradation of Reno flows; indexed by 
coexisting flows (40 flows) 
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Fig. 9: File transfer time of high-speed flows (40 flows) 
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Fig. 10: File transfer time of Reno flows; indexed by 
coexisting flows (40 flows) 

S

B
HS

H
A
C
R
V


