

 - 91 -

Abstract—It has been recognized that TCP throughput
deteriorates in high-speed networks with large bandwidth-delay
product, and new congestion control algorithms have been
proposed to address such deterioration. Assuming that the
proposed protocols would be in general used in the Internet, it is
imperative to study the interaction among flows of different
protocols, in addition to the interaction among flows using the
same protocol. In this paper, we discuss a method of assessing the
interaction among different protocols. By applying the same
experiment setup, including network configuration, flow
parameters, and workload of each flow, to multiple experiment
runs for the different protocols, we can assess flow-by-flow and
file-by-file behavior of different protocols. We provide some
numerical results in networks with multiple bottlenecks, a large
number of short-lived and long-lived flows, and variety of RTTs.
The results show that, while all high-speed TCPs are effective in
improving efficiency, they exhibit different detailed
characteristics. When compared to previous schemes, CUBIC,
Compound-TCP, and TCP-AdaptiveReno improve, to varying
degrees, RTT-fairness and Reno-friendliness. Our results also
show that, due to slow-start behavior of short flows, delay-based
control is not very effective in improving RTT-fairness as
expected. Based on the insight above, we have modified the
delay-based control part of TCP-AdaptiveReno and the results
show its highly balanced efficiency, friendliness, and fairness.

I. INTRODUCTION
CP has been designed for networks where a packet loss is
recognized as a congestion signal and for link speeds lower

than what is possible today. It is well known that TCP
performance suffers in fast and long-distance networks with
non-negligible random losses. To improve the performance of
TCP in such networks, a number of new TCP variants,
including High Speed TCP [1], Scalable TCP [2], FAST [3],
BIC [4], CUBIC [5], Hamilton-TCP [6], Compound-TCP [19],
TCP-Westwood [7,8], and TCP-AdaptiveReno [9], to mention
a few, have been proposed.

Assuming that these new protocols are likely to be deployed
on the Internet, rather than used in private networks, it is
imperative to study the interactions among flows of different
protocols, in addition to the interactions of flows using the
same protocol. TCP-Reno has been successful for more than a
decade and it is still widely used. Therefore, when new
protocols coexist with Reno, modest negative impacts on
TCP-Reno flows performance may be acceptable, but severe
damage to TCP-Reno flows would not be tolerated.

A framework for evaluating congestion control algorithms is
presented in [10]. Also, a proposal for a standard benchmark
suite is given in [11]. There are also a number of comparative
evaluations of the high-speed protocols [12-15,21]. In these

papers, the effects of RTT diversity, coexisting short-lived and
long-lived flows, and so on, have been studied. However, there
are few papers that extensively study the behavior of
high-speed protocols in networks with multiple bottlenecks,
including an evaluation of the coexistence of high speed
protocols with legacy protocols. Over paths with multiple
bottleneck links, fairness among flows traversing such paths
needs to be carefully evaluated. For example, fairness of flows
having diverse RTTs, fairness of flows having different hop
counts, or friendliness of different protocols under such
conditions needs to be investigated. In such a complex network
environment, to make the evaluations trustworthy and the
results for different protocols comparable, the conditions of
each experiment must be recreated with minimal change for the
various protocols under study.

In this paper, we discuss a method for assessing interactions
among different transport protocols. Three or more sets of
identical experiments except for the congestion control
algorithm used by each flow are run. Across these runs,
network topology, flows parameters, and workload parameters
are kept identical. To this end, our simulations rely on a
pre-generated set of network configurations, flows, and a
workload to be transferred using the TCP protocols. The
pre-generated environment is then used in our three set of
simulation runs: (1) all flows use TCP-Reno, say year 2005
case, (2) half of the flows use a high-speed protocol and the
remaining half use TCP-Reno, say year 2007 case, and (3) all
flows use high-speed protocol, say year 2010 case.

In this paper, we analyze statistic behavior of large number
of flows coexisting in complex network topologies. We have
executed the proposed method using the NS2 simulator and
compared various high-speed protocols, including loss-based,
delay-based, and combined loss-based and delay-based
methods. Regarding delay-based control, we confirmed that its
RTT-fairness is not as good as expected. Due to slow-start
behavior of short-lived flows, RTT often jumps up suddenly
and cause a packet loss, which prevents delay-based control
from staying in steady state equilibrium. Based on this
observation, we modified the delay-based control part of
TCP-AdaptiveReno to improve its RTT-fairness during
transient state, as well as in equilibrium state.

In the sequel, we provide some numerical results for
networks with multiple bottlenecks, a large number of
short-lived and long-lived flows, and RTT diversity, and
discuss the different behavior of a set of high-speed protocols.
We especially focus on friendliness to Reno, RTT-fairness, and
efficiency in multi-hop environment.

Assessing Interactions among Legacy and
High-Speed TCPs

Hideyuki Shimonishi, M. Y. Sanadidi, and Tutomu Murase

T

 - 92 -

II. TCP-ADAPTIVERENO
TCP-AdaptiveReno, or TCP-AReno, has been proposed for

higher efficiency in fast long-distance network while still
maintaining friendliness to Reno. TCP-AReno is an extension
of TCP-Westwood [8]. During congestion avoidance,
congestion window size W is adaptively increased based on
delay measurement. In addition, TCP-AReno also maintains a
window size WRENO that is increased by 1MSS per RTT like
Reno. When W becomes smaller than WRENO, W is increased to
WRENO. The following model such window size update:

where c is a delay-based congestion estimation, and c =
(RTT-RTTMIN) / (RTTCONG - RTTMIN). RTTCONG and RTTMIN are
the RTT value when a packet loss is expected and minimum
RTT is observed. B and R are the estimated bottleneck link
capacity, and the sending rate (=W/RTT), respectively. α and β
are control parameter for window increase and decrease,
respectively. The window size update functions above
implement a modified delay-based control method with the
following rational:

1) RTT-fairness in delay-based control is ensured when the
control is in equilibrium. However, the equilibrium is easily
broken by slow start behavior of other flows. Thus, to improve
RTT-fairness during transient state, RTT is multiplied on both
first and second term, implicitly and explicitly, compared to
regular delay-based control. With this change, the congestion
window increase rate is not proportional to the number of round
trip times but proportional to time elapsed.

2) To maintain friendliness to Reno, inflated congestion
window size has to be quickly reduced down to a Reno
compatible size whenever RTT increases. To ensure the
behavior, we put ec on the first term and Wc on the second term.
Thus, as soon as the path is being congested and queues are
building up, W is quickly decreased down to WRENO.

3) B/R is multiplied on the first term to improve scalability to
very high-speed networks. If current sending rate is less than
the estimated bottleneck link capacity, congestion window is
increased faster.

Note that in an equilibrium state, when α(B/W)RTTec=β
Wc, we have:

Thus, we can confirm that steady state throughput under
delay-based control is equal for all flows regardless of RTT.

Upon a packet loss, we tune congestion reduction as in
TCPW-BBE and reset WRENO, as follows:

This means that congestion window size is halved like Reno
when packet loss happens during congestion, i.e. c=1. On the
other hand, if packet loss happens while the congestion

estimate is low, the reduction is mitigated to improve efficiency
in networks with non-negligible random losses.

III. COMPARATIVE EVALUATION METHOD

A. Configuration Generation
To fairly evaluate TCP protocols, we repeat multiple sets of

experiments with the same configuration for different protocols.
We rely on an experiment scenario generator, consisting of a
topology generator, a flows generator, and a workload
generator, which are implemented in a set of tcl scripts for NS2
simulator. Below we briefly describe the three generators.

 Topology generator
As shown in Fig. 1, the topology generator builds a file

describing a set of links and nodes with their attributes such as
capacity and propagation delay. Some links may be configured
as wireless links with random packet losses. The topology may
be a simple dumbbell topology, but more generally, it will
include random network, tree, parking-lot, transit-stub, and
artificially generated Internet routers topologies.

 Flow generator
This module generates a set of flows. Flows are created from

randomly chosen source to randomly chosen destination unless
they are disconnected. In a client-server type application, a
small number of intermediate nodes are selected to connect the
server and a large number of edge nodes are selected to connect
the client hosts. In a peer-to-peer application, source and
destination nodes are connected to any of the edge nodes.

The flows may be divided to run under two or more protocols.
Flows in the same group use the same congestion control
algorithm, but different groups may use different algorithms.

 Workload generator
The workload generator generates a set of data chunks

characterized by file size and its initiation time. These files are
pre-generated for each flow and the same set of files is supplied
to each run to ensure repeated workload among different runs.

To evaluate the important effects of short-lived traffic, the
workload may be set up as an appropriate mix of short-lived
and long-lived flows. For short-lived flows, Internet file size
distribution studied in [17], or Pareto distribution may be used.
For long-lived flows, infinite file sizes may be used, but rather
large (media) files may also be used because a large portion of
the Internet traffic is occupied by large P2P file sharing. In the

),max(
/1

/

RENO

RENO

c

WWW
WW

WWcRTTe
R
BW

=

=+

⎟
⎠
⎞

⎜
⎝
⎛ −=+ βα

RENORENO W
c

WW
c

W
+

=
+

=
1

1,
1

1

c
eBR

c

β
α

=

Fig. 1: Comparative evaluation of high-speed

Topology generator Flow generator Work-load generator

Link A-B BW Delay
…

A B
…

C D
…

GroupA GroupB
Time : size
…

Time : size
…

Time : size
…

Time : size
…

Random, tree,
parking-lot, etc…

Client-server,
peer-to-peer, etc…

Heavy-tail (Pareto),
Ling-lived

Simulation run 1 Simulation run 2

Compare

Reno+Reno Reno+HS HS+HS

Simulation run 3

 - 93 -

later case, a time varying number of long-lived flows may be
specified to create changes in the network load, and thus agility
and stability of congestion control algorithms may be tested.

B. Experiments
The generated experiment scenario is exercised in three or

more sets of runs applying different protocol to each flow
group. Thus, we can compare the behavior of the same flow
when it uses Reno and when it uses a high-speed protocol, and
assess in what condition performance of a flow is improved by
the high-speed protocols. We can also compare the behavior of
a Reno flow when it coexists with other Reno flows and when it
coexists with a high-speed flow. We assess which high-speed
protocol is friendly to such Reno flows, and in what condition a
Reno flow is degraded.

IV. NUMERICAL RESULTS

A. Network Model and Traffic Model
As shown in Fig. 2, we used the parking-lot topology as a

good representative of the case of multiple bottleneck links.
There are 5 routers and 4 uni-directional backbone links whose
capacity is 1Gbps. Capacity of access links between routers and
terminals is also 1Gbps. Round trip propagation delay (RTD)
of each link is exponentially distributed and the average of
RTDs is 15msec. The average flow RTD is around 130msec
and about 60% of flows have RTD more than 100msec, a
reasonable number since the measurement results in [18]
pointed out that 40% of actual Internet flows have RTT more
than 100msec. Since high-speed routers tend to have smaller
buffer sizes than the bandwidth delay product, the buffer size is
set at 2MB, which corresponds to 16% of bandwidth delay
product for 100msec RTD.

We generated a large number of short-lived and long-lived
flows. The source and destination terminals are connected to
randomly selected nodes. File size distribution of short-lived
flows is Pareto with 1MB average and its inter-arrival time is
exponentially distributed with 1sec average. The number of
short-lived flows is 100; thus there is 800Mbps traffic load in
total over the 8 backbone links. For long-lived flows, the file
size is fixed at 4.7GB, which corresponds to 1 video DVD, and
its inter-arrival time is 2 min.

We compared RENO, High-speed TCP (HSTCP), Scalable
TCP, BIC, CUBIC, Hamilton-TCP, Compound-TCP,
TCP-Vegas and TCP-AdaptiveReno. We used a patch that

provides Linux TCP congestion control algorithms on NS2
simulator [20]. Thus the results loosely follow their Linux TCP
implementation, rather than the original NS2 codes of each
protocol. We have to note that, it is reported that CUBIC
behavior using this patch is somewhat different from its Linux
behavior, and indeed we got some unexpectedly poor
performance. For this reason, we removed CUBIC results from
this paper until the patch behavior in the future coincides with
the Linux implementation for CUBIC.

We tested three cases 1) all flows use Reno, 2) half of the
flows use Reno and the rest of the flows use the high-speed
protocol, and 3) all flows use the high-speed protocol. We
generated 12 different configuration sets, which are run for 10
minutes each.

B. Efficiency Improvement
In this section, we first confirm the performance

improvement of high-speed protocols. Then, we investigate
flow-by-flow behavior and discuss the characteristics of
high-speed protocols. The following results are obtained with
all flows using the high speed protocol.

Fig. 3 shows the average utilization of 8 backbone links. The
number of long-lived flows is set to 1, 10, and 40, successively.
As shown in this figure, all high-speed protocols improve the
average link utilization especially when traffic load is light.
Compound-TCP achieves slightly lower utilization than others,
but the difference is not that significant. Vegas, as it is not
designed as a high-speed version, shows the lowest efficiency,
even worse than Reno. This appears to be due to the frequent
slow start behavior of short-lived flows, the presence of small
buffer sizes, as well as multiple bottleneck links. In such
environment there are lots of packet losses even when the link
is not fully utilized and thus delay-based protocol like Vegas
tend to result in poor performance.

Although all high-speed protocols perform well in terms of
average link utilization, they are very different in detailed
behaviors. Figure 4 focuses on the per-flow throughput
improvement achieved by the high-speed protocols. The
number of long-lived flow is 40; and thus we have fairly loaded
paths. The improvement is defined here as:

Relative throughput of flow i = Ti
HS+HS / Ti

Reno+Reno
where Ti

HS+HS and Ti
Reno+Reno are the throughput of flow i in the

third run where all flow use high-speed protocols and the first
run where all flow use Reno, respectively. In Fig. 4, the relative
throughput of each flow is shown for various base RTT on
x-axis. In Fig.5, relative throughput of each flow is plotted
against the number of hops the flow traverses on x-axis.

Figures 4 and 5 illustrate the different character of the
high-speed protocols. Under protocols having progressive
congestion window increase like Scalable-TCP, flows with
short RTT and short hop count quickly increase their
throughput relative to the longer RTT flows, and occupy the
links capacities. As a result, there would be no space for long
RTT flows when they arise. On the other hand, newer protocols,
like Hamilton-TCP, Compound-TCP and TCP-AReno, exhibit
different behavior. They improve throughput of long RTT Fig. 2: Network model

Group A : 20 long-lived flows, 50 short-lived flows

Group B : 20 long-lived flows, 50 short-lived flows

L0

L1

L2

L3

L4

L5

L6

L7
L1-L7 : 1Gbps, 15msec (exponential distribution), 2MB tail-drop

 - 94 -

flows relative to shorter ones. That is they improve the
throughput of long RTT flows that suffer poor performance
under Reno. Regarding Compound-TCP, long RTT flows,
whose behavior is dominated by its delay-based function, do
not perform very well. This is because such flows takes longer
time to reach steady state, and as it is said for Vegas, the
equilibrium can easily be broken due to slow start behavior of
short-lived flows. Among these high-speed protocols,
TCP-AReno has the best RTT-fairness. It has little
performance improvement for flows whose RTT is less than
100msec, but it greatly improves performance of long RTT
flows. Delay-based behavior of TCP-AReno is designed so that
long RTT flows can increase congestion window faster.

As shown in Fig. 5, TCP-AReno and Hamilton-TCP are also

good at improving performance of flows traversing multiple
bottleneck links. We have to note here that, multi-hop flows
consume more network resource than single-hop flows, thus
allocating large bandwidth to multi-hop flows means
inefficient resource usage. If average throughput is the concern,
we would allocate as much resources as possible to single
hop-flows. But doing so would result in lower fairness. In this
paper, we do not address such trade-off between efficiency and
fairness.

C. Fairness among flows
Figure 6 shows per-flow throughput in heavily loaded

condition as a function of RTT. Scalable-TCP gets highest
throughput for short RTT flows and lowest throughput for long
RTT flows, i.e. its RTT-fairness is significantly worse than
even Reno. BIC, HS-TCP, and Compound-TCP improve
throughput regard less of RTT but their RTT-fairness is similar
to that of Reno. Since flows with varying RTT are competing at
multiple bottleneck links and slow start behavior of short-lived
flows results in frequent and unpredictable packet loss, it is not
easy for high-speed protocols to behave ideally as they are
designed in terms of fairness and friendliness. Only
TCP-AReno and Hamilton-TCP can improve RTT-fairness in
such significantly challenging conditions. Although they have
little throughput improvement for short RTT flows as expected,
throughput of long RTT flows is significantly improved. The
throughput ratio of 30msec RTT flow and 300msec RTT flow
of Reno, HSTCP, and Compound is 9.7, 9.7, 11.3, and 7.3,
respectively, while that of Scalable TCP is 20.3. Regarding
Hamilton-TCP and TCP-AReno, the ratio is only 5.5 and 4.9,
respectively.

To investigate fairness among flows a bit closer, we plot
cumulative distribution of per-flow throughput in Fig. 7. As it
is expected from the above results, Scalable-TCP has widest
distribution of per-flow throughput, while Hamilton-TCP and
TCP-AReno has small variation. For example, the fraction of
flows achieving throughput less than 20Mbps is 36%, 27%,
20%, 18%, 16%, 6%, and 4%, for Scalable, Vegas, Compound,
BIC, HS-TCP, Hamilton and AReno. On the other hand, 37%
of Scalable flows, 32% of BIC flows, 29% of HSTCP flows,
22% of Compound flows, 20% of Hamilton flows, 18% of
AReno flows, 12% of Reno flows and 11% of Vegas flows
have throughput more than 200Mbps.

If the network is lightly loaded, on the other hand, we
observe different results. Although we do not show figures in
this paper due to space limitation, we have confirmed that all
high-speed protocols have good RTT-fairness property, as well
as achieve high throughput. When the load is low, even
Scalable-TCP has significant improvement on the throughput
of long RTT flows. Since long RTT flows and short RTT flows
are not competing at backbone links and thus long RTT flows
are not disturbed by short RTT flows, long RTT flows achieve
high throughput as the high speed protocols are designed.

D. Friendliness to TCP-Reno
We examine the extent of Reno throughput degradation due

Fig. 3: Average link utilization

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 10 40

Number of long-lved flows

A
v
e
ra

g
e
 l

in
k
 u

ti
li
z
a
ti

o
n Reno

Vegas
HSTCP
Scalable
BIC
Hamilton
Compound
AReno

Fig. 4: RTT v.s. throughput improvement (40 flows)

Vegas Scalable

Compound

HSTCP
BIC

Hamilton

AReno

V

S

A
H
C

B

HS

Fig. 5: Hop-count v.s. throughput improvement (40 flows)

Vegas

Scalable

Compound
HSTCP

BIC

Hamilton
AReno

V

S

C
A
H

B
HS

 - 95 -

to the introduction of a coexisting high-speed protocol. We run
a first simulation set with all Reno flows, and then run a second
simulation set in which half of the Reno flows are replaced by

the high-speed protocols. Friendliness of high-speed protocols
to Reno is evaluated by the throughput degradation of Reno
flows due to such replacement. Thus, the degradation is defined
here as:

Throughput degradation of flow i =
TReno_i

HS+Reno / TReno_i
Reno+Reno

where TReno_i
HS+Reno is the throughput of Reno flow i in the

second run in which half of the flows use high-speed protocols.
TReno_i

Reno+Reno is the throughput of Reno flow i in the first run
where all flow use Reno.

Figure 8 shows throughput degradation of Reno flows and
the lines are labeled by coexisting protocols. The number of
long-lived flows is 40 thus the network is fairly loaded. There
are three groups of high-speed protocols. Compound-TCP and
AReno are most friendly to coexisting Reno flows because
their delay-based control is not in effect in such congested
condition and thus they behave just like Reno. They degrade
the throughput of coexisting short lived Reno flows by roughly
25%. Due to the improved overall network utilization, the
number of congested link increases. Longer flows traversing
multiple links are more likely to encounter multiple congested
links, and thus longer flows experience more degradation
especially due to coexisting AReno flows. The second group
consists of HS-TCP, Hamilton-TCP and BIC. They roughly
halve the throughput of coexisting Reno flows. Scalable TCP
severely degrades Reno throughput. Comparing to the case
where Reno flows compete with other Reno flows, throughput
of these Reno flows are degraded by 60%-85%, depending on
RTT, when they coexists with Scalable-TCP flows. Since
Scalable-TCP aggressively increases congestion window very
quickly, flows experience more packet losses which
significantly damages Reno flows.

On the other hand, when the network is lightly loaded,
high-speed protocols are sufficiently friendly to Reno flows
because, off cause, there is less contention in the network.
Although graphs are not shown in this paper, we found that
throughput degradation of Reno flows is less than 20%
regardless of RTT when the number of long-lived flows is 10.

E. File transfer time of short-lived flows
Figure 9 and 10 show average file transfer times of

high-speed flows and Reno flows. The transfer time starts when
the sender sends out the first packet and ends when the sender
receives an acknowledgement for its last packet. As shown in
Fig. 11, transfer of smaller files, e.g. less than 1MB, is
completed during slow-start and there is no significant
difference among the different protocols. On the other hand,
transfer time of mid-sized files, for which congestion control is
in effect, is improved by AReno, Hamilton, and BIC. Scalable
TCP is not effective for mid-sized files because of its
aggressive behavior described above. Its aggressive behavior
increases packet loss probability and only a single packet loss
affects much for these small and mid-sized transfers.

Figure 10 shows file transfer times when half of the flows
use a high-speed protocol. The lines are labeled by the
coexisting high-speed protocols. Except in the case of the
aggressive behavior of Scalable-TCP resulting in increasing
file transfer time of coexisting Reno flow, other high-speed
TCPs are do not seriously degrade Reno throughput.

V. CONCLUSION
In this paper, we discussed a method of assessing

interactions among different protocols. Using a pre-generated
set of configurations repeatedly for different mixes of protocols,
we can assess flow-by-flow and file-by-file behavior under
different protocols. We provided simulation results of networks
with multiple bottlenecks, a large number of short-lived and
long-lived flows, and variety of RTTs.

The results generally show the effectiveness of most
high-speed TCPs, and their differing characteristics in per-flow
behavior. Earlier protocols like High Speed TCP and Scalable
TCP achieve good efficiency and average throughput. The
more recent generation of protocols improve RTT-fairness and
friendliness to coexisting Reno flows. Scalable TCP shows
degraded RTT-fairness and damage to coexisting Reno flows,
especially in loaded networks. BIC has very similar character
with High Speed TCP but has slightly improved per-flow
throughput. In contrast, newer ones like Hamilton-TCP,
Compound TCP and TCP-AReno have greatly improved
fairness and friendliness. They achieve link utilization as high
as the previous generation, but improvement of average
per-flow throughput is limited because they allocate larger
bandwidth to flows using multiple links and consume more

Fig. 6: RTT v.s. per-flow throughput (40 flows)

V
S

C

A
H
B

HS
R

S

R
A
H
C
V

B
HS

Fig. 7: CDF of per-flow throughput (40 flows)

V

B,C,HS,H,A

R

S

 - 96 -

network resources. Hamilton-TCP has good fairness among

flows but its friendliness to coexisting long-lived Reno flows
is comparable to previous generation protocols. While
Compound-TCP has best friendliness to Reno even in highly
loaded conditions, its throughput improvement is limited
especially for long RTT flows. TCP-AReno maintains high
link utilization and has best RTT-fairness, while maintaining
good friendliness to Reno.

Future work related to this coexistence study would cover
other prominent protocols like FAST, CUBIC, TCP-Libra, and
variants of TCP Westwood, as well as expand the range of

parameters used in this study. More importantly, we would like
to carry measurements of actual implementations on emulated
or existing Internet II paths to confirm the simulation results.

ACKNOWLEDGEMENTS
The authors would like to thank Prof. Lachlan Andrew, Prof.

Steven Low, Dr. David Wei, Prof. Injong Rhee, and Mr.
Takayuki Hama, for their helpful advice.

REFERENCES
[1] S. Floyd, “High Speed TCP for large congestion windows”, RFC 3649,

2003.
[2] T. Kelly, “Scalable TCP: Improving performance in high-speed wide area

networks”, In Proc. of PFDnet, 2003.
[3] C. Jin, D. X. Wei, S. H. Low, “FAST TCP: motivation, architecture,

algorithms, performance”, in Proc of IEEE INFOCOM, 2004.
[4] Lisong Xu, Khaled Harfoush, and Injong Rhee, "Binary Increase

Congestion Control for Fast Long-Distance Networks", In Proc. of
INFOCOM 2004

[5] Injong Rhee and Lisong Xu, “CUBIC: A New TCP-Friendly High-Speed
TCP Variant”, In Proc. of PDLFnet, 2005

[6] R.N.Shorten, D.J.Leith, “H-TCP: TCP for high-speed and long-distance
networks”, In Proc. of PDLFnet, 2004

[7] R. Wang, M. Valla, M. Y. Sanadidi, and M. Gerla, "Adaptive Bandwidth
Share Estimation in TCP Westwood", In Proc. of Globecom 2002.

[8] H. Shimonishi, M. Y. Sanadidi, and M. Gerla, “Improving
Efficiency-Friendliness Tradeoffs of TCP in Wired-Wireless Combined
Networks”, In Proc. of ICC, 2005.

[9] H. Shimonishi, T. Hama, and T. Murase, “TCP-AdaptiveReno: Improving
Efficiency-Friendliness Tradeoffs of TCP Congestion Control
Algorithm”, In Proc. of PDLFnet, 2005

[10] S. Floyd, “Metrics for the evaluation of Congestion Control Mechanisms”
[11] D. Wei, “Time for a TCP Benchmark Suite”
[12] H. Bullot, “Evaluation of Advanced TCP Stacks on Fast Long-Distance

Production Networks”
[13] Y. Li, “Experimental Evaluation of TCP Protocols for High-Speed

Networks”
[14] S. Ha, Y. Kim, L. Le, I. Rhee, and Lisong Xu, “A Step toward Realistic

Performance Evaluation of High-Speed TCP Variants”, In Proc. of
PDLFnet, 2006

[15] K. Kumazoe, K. Kouyama, Y. Hori, M. Tsuru, and Y. Oie, “Can
high-speed transport protocols be deployed on the Internet? : Evaluation
through experiments on JGNII” , In Proc. of PDLFnet, 2006

[16] C. Marcondes, M. Y. Sanadidi, M. Gerla, H. Shimonishi. T. Hama, and T.
Murase, “Inline Path Characteristic Estimation to Improve TCP
Performance in High Bandwidth-Delay Networks”, In Proc. of
PDLFnet2006, 2006

[17] P. Bardord and M. Crovella. Generating representative web workloads for
network and server performance evaluation. In SIGMETRICS'98

[18] J. Aikat J. Kaur F. Donelson S. K. Jeffay , “Variability in TCP Roundtrip
Times” ACM IMC 2003

[19] K. Tan, J Song, Q Zhang, and M. Sridharan, “Compound TCP: A Scalable
and TCP-Friendly Congestion Control for High-speed Networks “, In
Proc. of PFLDnet, 2006

[20] D. Wei and P. Cao, “A Linux TCP implementation for NS2”, available at
http://www.cs.caltech.edu/~weixl/technical/ns2linux/index.html, May.
2006.

[21] R. Wang, M. Valla, M.Y. Sanadidi, B. K. F. Ng, M. Gerla,
"Efficiency/Friendliness Tradeoffs in TCP Westwood",
Seventh IEEE Symposium on Computers and
Communications, Taormina, Italy, 1 - 4 July, 2002.

Fig. 8: Throughput degradation of Reno flows; indexed by
coexisting flows (40 flows)

Scalable

Compound

HSTCP
BIC

Hamilton

AReno

S

A

HS
H
B

C

Fig. 9: File transfer time of high-speed flows (40 flows)

S
V
C
R

HS

B
H
A

Fig. 10: File transfer time of Reno flows; indexed by
coexisting flows (40 flows)

S

B
HS

H
A
C
R
V

