Experimental Results of TCP/IP data transfer On 10Gbps IPv6 Network

Junji Tamatsukuri, Katsushi Inagami Mary Inaba, and Kei Hiraki University of Tokyo / Data Reservoir Project

Overview

- We show the maximum performance of Single TCP/IPv6 stream on LFN (Long Fat Network)
 - Pseudo LFN experiments by network emulator
 - Real LFN experiments (over 30000km)
 - Tokyo Seattle circuit
 - Tokyo Chicago circuit

An Important Result

- "We can get same single TCP performance on LFN and local network".
 - Necessary condition
 - Perfect network condition
 - Sufficient host computer performance
 - CPU for packet processing
 - Memory for data production, TCP window
 - I/O bus for network adaptor, storage

- These condition mean No bottleneck in path

Current 10Gbps Problem

- Single stream TCP/IP performance is governed by bottleneck.
 - Network
 - 10Gbps Ethernet
 - Host
 - Interconnects (HT)
 - I/O bus (PCI-X)
- Current bottleneck is Host I/O Bus (PCI- X).

To relax the bottleneck

- PCI-X Bottleneck influence is remarkable at Sender Side.
 - Exploit "flow control" on edge port
 - Use back pressure to network
 - "Transmission rate control" at sender side
 - Decrease receiving side burst pressure

Pseudo Network Experiment

- LFN is a large RTT network.
 - Insert long delay by network emulator
- We use Anue H series network emulator
 - Anue H series can insert precise delay both direction .

• Flow Control on LFN switches

Anue H Series Network Emulator

Experiment Equipments

- Dual Opteron 248 (2.2GHz)
 - Rioworks HDAMA
 - DDR3200 CL2 2GB (Only Single Memory Bus)
- OS: Linux-2.6.6 (Linux TCP/IP stack)
- APP: Iperf-2.0.2
- Network Adaptor
 - Chelsio T110 Protocol Engine
 - TOE(TCP Offload Engine)
 - driver: chtoe-t1-1.1.4
 - Chelsio N110 Server Adapter
 - Without TOE
 - driver: cxgb-2.1.1
 - Intel PRO/10GbE
 - NAPI, TSO(TCP Segment Offload)
 - driver: ixgb-1.0.110

Intel PRO/10GbE

IPv6 Performance on Pseudo Network

- We measure performance from 0ms to 400ms RTT.
 - Standard Frame
 - Jumbo Frame(9198 Byte)
- Good performance on Pseudo LFN.
 - Local: 7 Gbps over
 - 400ms: almost 7Gbps over
 - 3 adaptor show similar peak performance on all RTT.
- Peak performance doesn't change by RTT.

Window Buffer Size on LFN

- RTT defines necessary window buffer size
 - Theoretical value
 - Buffer Size = RTT × Traffic Rate
 - Real value
 - Linux stack needs 3 times larger than theoretical value.
- Proper value shows most stable result on communication

CPU usage on Host

- Sender Side
 - Almost full use for TCP stack
 - Application use: 1%
 - Unstable behavior
 - Because of heavy CPU load
- Receiver Side
 - 40% idle
 - Stable behavior
 - Only periodical interrupt from network adaptor

Receiver side

IPv4 Performance on Pseudo LFN

- IPv4 shows same performance as IPv6
 - All result is software performance.
 - Local: 7Gbps over
 - 400ms: 7Gbps over

Real LFN Experiment

- We tried Real LFN measurement
 - IEEAF Tokyo Seattle circuit
 - JGN2 Tokyo Chicago circuit
- Real LFN has more difficult condition
 - Packet loss, Jitter of Packet arrival
 - By network circuit, network equipment
- All parameters set according to Pseudo LFN Experiment
 - based on 200ms, 400ms result
 - Same Host Configuration with New kernel 2.6.12
 - Only use Chelsio T110 adaptor without TOE

Network Configuration

Tokyo – Seattle – Tokyo LFN Experiment

- Tokyo Seattle Roundtrip
 - 2005/10/28
 - RTT 178ms
 - Distance 15,461km
 - Window buffer 512MB
- LFN routers
 - Foundry NI40G: T-LEX, Seattle, U-Tokyo(NEZU)
 - Hitachi GS4000: U-Tokyo, NTT Otemachi
- Circuit condition
 - Stable but low performance
 - Performance 5.96Gbps

T-LEX NI40G

Seattle NI40G

Tokyo – Chicago – Tokyo LFN Experiment

- Tokyo Chicago Roundtrip
 - 2005/10/28,29
 - RTT 322ms
 - Distance 20,294km
 - Window buffer 896MB
- Route
 - Equipment
 - Foundry NI40G: T-LEX, U-Tokyo(NEZU)
 - Hitachi GS4000: U-Tokyo, NTT Otemachi, Chicago, KDD Otemachi
- Circuit condition
 - Unstable
 - Periodical UP/DOWN condition
 - Performance 5.6Gbps

Periodical UP/DOWN

JGN NTT Otemachi GS4000

Tokyo – Seattle – Tokyo – Chicago – Tokyo LFN Experiment

- Tokyo Seattle Chicago Roundtrip
 - 2005/10/29
 - RTT 500ms
 - Distance 35,755km
 - Window buffer 896MB
- Route
 - T-LEX -> Seattle -> KDD Otemachi -> Chicago -> U-Tokyo -> T-LEX
 - NI40G, GS4000
- Circuit condition
 - Better than Chicago roundtrip
 - We couldn't observe UP/DOWN condition
 - Performance 5.6Gbps

Seattle NI40G

JGN Chicago GS4000

Result on Real LFN

- Network condition has much influence
 - We tried test for preparing of SC2005
 - All the routes have many problem in circuits and equipments.
 - We got 6Gbps level performance on real LFN.
 - We set decreased clock on sender side (6Gbps).
 - For stable receiving.
- Result couldn't reach pseudo LFN performance.
 - Real LFN has very difficult condition.
 - Except for circuit condition, Real LFN shows same behavior of Large RTT pseudo network

Concluding Remarks

- We show pseudo/real LFN experiment
 - Sender side rate control / Flow Control is effective for Single TCP performance.
 - Real network has many influence elements on circuit, equipment.
- We got Internet2 Land Speed Record
 - IPv6 Single/Multi Stream Category (2005/10/29)
 - 5.6Gbps × 30,000km
- Aimed at more performance
 - We'll try experiments for the result as same as pseudo LFN result.

Acknowledgements

- Thanks to
 - WIDE Project / T-LEX IEEAF staffs
 - JGN2 Domestic / International Operation
 - Hitachi, Alaxala
 - Foundry Networks
 - Chelsio