Transmission Timer Approach for Rate
Based Pacing TCP with Hardware Support

Katsushi Kobayashi

ikob@koganei.wide.ad.jp
NICT, JAPAN

NICT

TCP slow-start burstiness and RBP

/
% / / Interframe gap (g): é; /
: / g = RTT x MSS Jewnd %
S | » S
Time mitigate burstiness with RBP Time

without RBP

€8 withRBP £§

>

NICT

How host
handles datagram

<APPIication> Host System
— RBP with kernel
\/

Socket i/f To wait interframe gap time scheduler

\ using kernel scheduler clock.
’ Liiﬁx MSS/cwnd

%\ TCP <€»|Scheduler
g l "* NIC
78]
P— @ 2
-
o MAC <}>
O | l; D . 4
Device Driver_llq j H H H H H
I g:Interframe gap

NICT

<Application

CPU + memory

T

\/

Socket i/f
|

TCP

=/~

IP Queue Manager
| I

MAC

!

Host System

Specify QoS
information

datagrams.

W

BUS |

Legacy Queue
management

| Queue manager identifies
flow, and schedules

<>

Device Driveré

NICT

NIC

=R

)

RBP TCP with OS scheduler

Interframe gap@ | 500Bytes packet size

Bandwidth | Interframe gap

® Interframe gap@higher 100Kbps | 120 msec.
bandwidth communication

<< OS scheduler tick
granularity as | - |0 m sec. |0Mbps 1.2 msec.

| Mbps |2 msec.

| 00OMbps 120 u sec.

® Precise rate based pacing
mechanism not to rely on
kernel scheduler is required. |0Gbps

| Gbps |2 u sec.

|.2 u sec.

NICT

- Host System , :
Application Pr’eC|Se RBP Wlth

HW

Socket i/f Iraki
ocket i %CP stack adds Hiraki et al.
interframe gap information onto NIC i dentiﬁes}

TC

4’__’/\
P

packet data.

¥

%

BUS

CPU + memory

L

K4
>
0O

<>

Device Driver

manages transport level
flow, and schedules packets

using the gapinfo./

NIC

|l <> <S> B> 5 ed>

S

TRIRUE

NICT

g:Interframe gap

< - > Host System
Application
T L

\/

Socket i/f

IP &

—

Q

ueue

stem

manager computes
interframe gap with

referring back TCPCB, and
inserts appropriate

length pause fr

P i I

T

|

o0

ame.

e
>

Device Driver%

7

IC

NICT

Precise RBP with
pause frame.

Takano et al.

802.3 switch
pause frame, if pause time

IS zero/

an

N

ignores

sw||”]

g:Interframe gap

Requirement for precise packet pacing

® Precise packet pacing more than OS scheduler granularity
® Follow frequent interframe gap (rate) changing

® Re-order packet at sender host even on the same connection
stream.

® Free from upper layer

® Not depend specific transport protocol.

NICT

o Host System
C“T‘W D RBP TCP with

transmission timer

Socket i/f TCP stack adds timer

information when packet should be

sent.
Scheduler NIC schedules packet with
time +
IP
Device driver hands\

timer information
i tlme l
over transmission time in relative

RTC A -
tme expression. > B> e el iy
Dt > (111 el

g:Interframe gap

NICT

NIC implementation

® Intel IXP2400 NP (Radisys ENP261 1) act as PCl GbE NIC

® 3 output queues: transmission timer, high priority, bast effort

® timer value (delay) specified in DMA descriptor by device
driver

® up to 100 milli second delay using 2 level scheduler
® 4,096 ring bin slots, 27 micro sec./slot

® NP scheduler, 26.7 nano sec. granularity

NICT

RBP TCP implementation
® FreeBSD 4.10
® Add transmission time attribute to mbuf
® Add transmission time field of last segment to tcpcb
® Precise RTT measurement for computing interframe_gap :
interframe_gap = RTT x MSS/cwnd;

® Estimate tranmission_time for each segment:
tranmission_time
= interframe_gap + transmission_time of previous segment;
® Decide whether send it, or postpone next events:
iIf (transmission_time > current_time() + scheduler_tick)

tsleep(); sleep until next scheduler interrupt (— RBP with Software
elsef

update mbuf with transmission_time; <= RBP with HW
Ip_output();

NICT

RBP TCP implementation (cont'd)

® Mainly modify tcp_output(), not to modify IP layer.
® Less than 1,000 line hacking in TCP
® more than 30,000 is TCP code in FreeBSD

® FreeBSD TCP stack does not record the buffer pointer last transmitted.
® Buffer traverse process is required at every packet.
® Suppress TCP throughput on large cwnd.
® borrowed from NetBSD 2.0 code.

® Too many referring RTC
® Suppress TCP throughput with original microtime()

NICT

o Host System
C“T‘W D RBP TCP with

transmission timer

Socket i/f TCP stack adds timer

information when packet should be

sent.
Scheduler NIC schedules packet with
time +
IP
Device driver hands\

timer information
i tlme l
over transmission time in relative

RTC A -
tme expression. > B> e el iy
Dt > (111 el

g:Interframe gap

NICT

RTC performance

®) function is provided by original FreeBSD

® microtime(): accesses RTC, higher accuracy result.

® getmicrotime(): returns cached value that is updated each scheduler interrupt
® light microtime(): to correct getmicrotime() result with CPU TSC (Time

Stamp Counter) on x86

e TSC counts CPU clock cycle

e Used for performance evaluation for program code.

® X 40 faster than original microtime() with enough accuracy.

elapsed TSC Sccuracy of result packet throughput limit
elapsed time Y due to RTC overhead
microtime() 16,000 count Micro sec 200K packets/sec.
5 micro sec. ' 2.4Gbps@ 1,500 Bytes/packet
etmicrotime() 89 count |-10 m sec. 330M packets/sec.
J < 30 n sec. (depend on scheduler) 3Tbps@ 1,500 Bytes/packet
light microtime() 360 count Micro sec 83 M packets/sec.
'S © 120 n sec. ' | Tbps@ |,500Bytes/packet

NICT

RBP TCP experiment

® |Gbps/I100 m sec. delay (200 m sec.RTT) between sender and receiver

® no bott

eneck between sender and receiver

® Nno com

betitive flow

® Agelent Router Tester captured packets on sender side.

TCP Sender
DELL PE2650]
w EN2611 NIC

based

Network Emulator

1Gbps/100msec delay

TCP Reciever
DELL PE2650
w BCM5703

on ENP2611

Packet Capture
Agilent Router Tester

NICT

Packet sequence

6000 —

5000 —

4000 —

3000 —

2000 —

1000 —

End of slow-start

!
Software

pacing only

No pacng/

’ Pacing with
hardware

0

.0 0.5 1.0

I}
| | | | |

1.5 2.0 2.5 3.0 3.5

Time (sec.)

No RBP

RBP with
software only

RBP with
Hardware

NICT

CPU tick:10 m sec.

Packet interval (sec.) Packet interval (sec.)

Packet interval (sec.)

Packet interval in TCP slow-start with original stack. (HZ=100)

10"

107

10° j

10™ ' ;:"'}
bttt end ili

| : | | | | | |
00 05 10 1.5 20 25 3.0

Time (sec.)

Packet interval in TCP slow-start with software pacing only. (HZ=100)

107 =
107 . S
10° - N I R
LT e
10 - Sl e S
| - | : | ".I — |
0.0 0.5 1.0 1.5 2.0
Time (sec.)
Packet interval in TCP slow-start with hardware pacing. (HZ=100)
107
107 . -‘_\,
107 =
v
10 =
| 2

| : | | | | | | |
00 05 1.0 1.5 20 25 30 35

Time (sec.)

CPU tick:l m sec.

Packet interval (sec.) Packet interval (sec.)

Packet interval (sec.)

Packet interval in TCP slow-start with original stack. (HZ=1000)

10" =
107 =
107 .
10 i i
L | | l I l I j
00 0.5 1.0 15 20 30 35
Time (sec.)

Packet interval in TCP slow-start with software pacing only. (HZ=1000)

10" =
107
107 =
10 =
| - | — | | | - | | |
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Time (sec.)
Packet interval in TCP slow-start with hardware pacing. (HZ=1000)
10"
10_2 I . q_‘_‘
107 =
10 =

I T I I I I g
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Time (sec.)

Buestiness index on slow-start

® Bandwidth BW(t) and serialization delay sigma(t) derived as:
o BW(t) = cwnd(t) / RTT, sigma(t) = RTT/cwnd(t)

® cwnd(t) is assumed in exponential growth:
® cwnd(t) =27t/ RTT) x MS

® Packet delay d(i) at bottleneck:
o d(i) = max(d(i - 2) + sigma(t_i) - t_i-t {i-1},0) 90)

® Burstiness index b is derived normalizing with RTT:
® b(i) =d(i)/RTT, B = sum(b(i))

 BW(t) = cwnd(t) / RTT

® b(i) represents how much buffer is required at bottleneck by
the stream itself.

® [f b(i) = |: delay-bandwidth product size
® [f b(i) = 0: no buffer, complete RBP.

NICT

1.0

0.8

0.6

0.4

0.2

Burstiness Index per packet

0.0

1.0 —

0.8 +

0.6 -

0.4 —

0.2 H

Burstiness Index per packet

Buestiness indexygsult (1)

no pacing. (HZ=100)

L

0.0

| | | | |
1000 2000 3000 4000 5000
Number of packet sequence

with hardware pacing. (HZ=100)

NICT

| | | | |
1000 2000 3000 4000 5000
Number of packet sequence

Burstiness Index per packet

1.0 1

0.8

0.6

0.4

0.2 —

0.0 —=

0.2 =

0.0

rdware pacing. (HZ=100)

0

1000 2000 3000

Nu

f packet sequence

|
4000

|
5000

1000

|0 msec. | msec.

RBP w H/W |.5e-7 |.5e-7

RBP wo H/W 4.1e-4 5.0e-6
no RBP 0.31 0.31

No RBP

RBP with
software only

RBP with
Hardware

NICT

Buestiness index result (2)

CPU tick:10 m sec.

Burstiness Index per packet Burstiness Index per packet

Burstiness Index per packet

10° —

10”
107
107
107
107
107
107
10°

]

no pacing. (HZ=100)

e

0 1000

I I I I I I
2000 3000 4000 5000
Number of packet sequence

software only pacing. (HZ=100)

0 1000

2000 3000
Number of packet sequence

4000 5000

pacing with hardware. (HZ=100)

0 1000

2000 3000
Number of packet sequence

4000

CPU tick:l m sec.

Burstiness Index per packet Burstiness Index per packet

Burstiness Index per packet

10°
10"
107
107
10"
107
107
107
10°

no pacing. (HZ=1000)

(Cars

0 1000

I I I I I
2000 3000 4000 5000
Number of packet sequence

Software pacing only. (HZ=1000)

0 1000

2000 3000
Number of packet sequence

4000

pacing with hardware. (HZ=1000)

0 1000

2000 3000
Number of packet sequence

4000

Transmission Timer for UDP

® SO_TIMESTAMP is provided to obtain packet received time
information.

® structtimeval data accommodated as ancillary data with
recvmsg() system call.

® Receive only.

® To extend so_TIMESTAMP at sending UDP datagram to specify
the time that the application expects.

NICT

Application

\/

Socket i/f

Socket i/f

time

emor >
!_5
o N :
=

IP

time

+ m

time

& [

Device Driver

Operating System

delay

delay

BUS

NICT

L ——

Application specifies time
packet should sent

UDP with
transmission timer

NIC

Conclusion

® Transmission timer approach for RBP
® Framework
® |mplementation

® Result

® [s our approach including interlayer interaction
worse !

® Does NIC vender interest this kind approach ?

NICT

