
Transmission Timer Approach for Rate
Based Pacing TCP with Hardware Support

Katsushi Kobayashi
ikob@koganei.wide.ad.jp

NICT, JAPAN

Pa
ck

et
 s

eq
ue

nc
e

Time

Pa
ck

et
 s

eq
ue

nc
e

Time

without RBP

with RBP

TCP slow-start burstiness and RBP

mitigate burstiness with RBP

Burstiness traffic makes overflow on a
bottleneck buffer, Packet loss is happen on the
bottleneck, although link capacity is enough.

Interframe gap (g):

g = RTT x MSS /cwnd

ggggggg
gggggg

Host System

Operating System

C
PU

 +
 m

em
or

y

Socket i/f

Application

TCP

IP

MAC

Device Driver

NIC

BU
S

How host
handles datagram

Host System

Operating System

C
PU

 +
 m

em
or

y

Socket i/f

Application

TCP

IP

MAC

Device Driver

NIC

BU
S

To wait interframe gap time
using kernel scheduler clock.

g = RTT x MSS/cwnd

g:Interframe gap

g g g g g

Scheduler

RBP with kernel
scheduler

Host System

Operating System

C
PU

 +
 m

em
or

y

Socket i/f

Application

Device Driver

NIC

BU
S

Legacy Queue
management

TCP

Specify QoS
information

Queue manager identifies
flow, and schedules

datagrams.

Queue Manager

MAC

IP

RBP TCP with OS scheduler

• Interframe gap@higher
bandwidth communication

 << OS scheduler tick
granularity as 1 - 10 m sec.

• Precise rate based pacing
mechanism not to rely on
kernel scheduler is required.

Bandwidth Interframe gap

100Kbps 120 msec.

1Mbps 12 msec.

10Mbps 1.2 msec.

100Mbps 120 u sec.

1Gbps 12 u sec.

10Gbps 1.2 u sec.

Interframe gap@1500Bytes packet size

Host System

Operating System

C
PU

 +
 m

em
or

y

Socket i/f

Application

IP

MAC

Device Driver

NIC

BU
S

g:Interframe gap

g g g g g

Precise RBP with
HW

Hiraki et al.

NIC identifies and
manages transport level

flow, and schedules packets
using the gap info.

TCP

TCP stack adds
interframe gap information onto

packet data.

gap

gap

gap
gap

Host System

Operating System

C
PU

 +
 m

em
or

y

Socket i/f

Application

Device Driver

NIC

BU
S

g:Interframe gap

g g g

Precise RBP with
pause frame.

Takano et al.

g

TCP

Queue
manager computes
interframe gap with

referring back TCPCB, and
inserts appropriate

length pause frame.

SWggg
ggg

802.3 switch ignores
pause frame, if pause time

is zero.

g

IP

Queue Manager

MAC

g

Requirement for precise packet pacing

• Precise packet pacing more than OS scheduler granularity

• Follow frequent interframe gap (rate) changing

• Re-order packet at sender host even on the same connection
stream.

• Free from upper layer

• Not depend specific transport protocol.

Host System

Operating System

C
PU

 +
 m

em
or

y

Socket i/f

Application

IP

MAC

Device Driver

NIC

BU
S

g:Interframe gap

g g g g g

RBP TCP with
transmission timer

NIC schedules packet with
timer information

TCP

time

delay

time

time
RTC

Scheduler

Device driver hands
over transmission time in relative

expression.

TCP stack adds timer
information when packet should be

sent.

NIC implementation

• Intel IXP2400 NP (Radisys ENP2611) act as PCI GbE NIC

• 3 output queues: transmission timer, high priority, bast effort

• timer value (delay) specified in DMA descriptor by device
driver

• up to 100 milli second delay using 2 level scheduler

• 4,096 ring bin slots, 27 micro sec./slot

• NP scheduler, 26.7 nano sec. granularity

RBP TCP implementation
• FreeBSD 4.10

• Add transmission time attribute to mbuf
• Add transmission time field of last segment to tcpcb

• Precise RTT measurement for computing interframe_gap :
interframe_gap = RTT x MSS/cwnd;

• Estimate tranmission_time for each segment:
tranmission_time

= interframe_gap + transmission_time of previous segment;

• Decide whether send it, or postpone next events:
if (transmission_time > current_time() + scheduler_tick)

tsleep(); sleep until next scheduler interrupt
else{

update mbuf with transmission_time;
ip_output();

}

RBP with HW

RBP with Software

RBP TCP implementation (cont’d)

• Mainly modify tcp_output(), not to modify IP layer.

• Less than 1,000 line hacking in TCP

• more than 30,000 is TCP code in FreeBSD

• FreeBSD TCP stack does not record the buffer pointer last transmitted.

• Buffer traverse process is required at every packet.

• Suppress TCP throughput on large cwnd.

• borrowed from NetBSD 2.0 code.

• Too many referring RTC

• Suppress TCP throughput with original microtime()

Host System

Operating System

C
PU

 +
 m

em
or

y

Socket i/f

Application

IP

MAC

Device Driver

NIC

BU
S

g:Interframe gap

g g g g g

RBP TCP with
transmission timer

NIC schedules packet with
timer information

TCP

time

delay

time

time
RTC

Scheduler

Device driver hands
over transmission time in relative

expression.

TCP stack adds timer
information when packet should be

sent.

RTC performance
• 2 function is provided by original FreeBSD

• microtime(): accesses RTC, higher accuracy result.

• getmicrotime(): returns cached value that is updated each scheduler interrupt

• light microtime(): to correct getmicrotime() result with CPU TSC (Time
Stamp Counter) on x86
• TSC counts CPU clock cycle

• Used for performance evaluation for program code.

• x 40 faster than original microtime() with enough accuracy.

elapsed TSC
elapsed time

accuracy of result
packet throughput limit
due to RTC overhead

microtime() 16,000 count
5 micro sec.

micro sec.
200K packets/sec.

2.4Gbps@1,500 Bytes/packet

getmicrotime() 89 count
< 30 n sec.

1-10 m sec.
(depend on scheduler)

330M packets/sec.
3Tbps@1,500 Bytes/packet

light microtime() 360 count
120 n sec.

micro sec.
83 M packets/sec.

1Tbps@1,500Bytes/packet

RBP TCP experiment

• 1Gbps/100 m sec. delay (200 m sec.RTT) between sender and receiver

• no bottleneck between sender and receiver

• no competitive flow

• Agelent Router Tester captured packets on sender side.

6000

5000

4000

3000

2000

1000

0

Pa
ck

et
 s

eq
ue

nc
e

3.53.02.52.01.51.00.50.0
Time (sec.)

No pacing

Software
pacing only

Pacing with
hardware

End of slow-startTCP Sender
DELL PE2650
w EN2611 NIC

TCP Reciever
DELL PE2650
w BCM5703

Network Emulator
based on ENP2611
1Gbps/100msec delay

Packet Capture
Agilent Router Tester

1Gbps 1Gbps

10-4

10-3

10-2

10-1

Pa
ck

et
 in

te
rv

al
 (

se
c.

)

3.53.02.52.01.51.00.50.0
Time (sec.)

Packet interval in TCP slow-start with hardware pacing. (HZ=1000)

10-4

10-3

10-2

10-1

Pa
ck

et
 in

te
rv

al
 (

se
c.

)

3.53.02.52.01.51.00.50.0
Time (sec.)

Packet interval in TCP slow-start with hardware pacing. (HZ=100)

10-4

10-3

10-2

10-1

Pa
ck

et
 in

te
rv

al
 (

se
c.

)

3.53.02.52.01.51.00.50.0
Time (sec.)

Packet interval in TCP slow-start with software pacing only. (HZ=100)

10-4

10-3

10-2

10-1

Pa
ck

et
 in

te
rv

al
 (

se
c.

)

3.53.02.52.01.51.00.50.0
Time (sec.)

Packet interval in TCP slow-start with original stack. (HZ=100)

10-4

10-3

10-2

10-1

Pa
ck

et
 in

te
rv

al
 (

se
c.

)

3.53.02.52.01.51.00.50.0
Time (sec.)

Packet interval in TCP slow-start with original stack. (HZ=1000)

10-4

10-3

10-2

10-1

Pa
ck

et
 in

te
rv

al
 (

se
c.

)

3.53.02.52.01.51.00.50.0
Time (sec.)

Packet interval in TCP slow-start with software pacing only. (HZ=1000)

CPU tick:10 m sec. CPU tick:1 m sec.

RBP with
software only

No RBP

RBP with
Hardware

Buestiness index on slow-start

• Bandwidth BW(t) and serialization delay sigma(t) derived as:

• BW(t) = cwnd(t) / RTT, sigma(t) = RTT/cwnd(t)

• cwnd(t) is assumed in exponential growth:

• cwnd(t) = 2^(t / RTT) x MS

• Packet delay d(i) at bottleneck:

• d(i) = max(d(i - 2) + sigma(t_i) - t_i - t_{i-1}, 0)

• Burstiness index b is derived normalizing with RTT:

• b(i) = d(i)/RTT, B = sum(b(i))

• b(i) represents how much buffer is required at bottleneck by
the stream itself.

• If b(i) = 1: delay-bandwidth product size

• If b(i) = 0: no buffer, complete RBP.

BW(t) = cwnd(t) / RTT

i i-1 i-2 i-3

i-4

d(i)

1.0

0.8

0.6

0.4

0.2

0.0

Bu
rs

tin
es

s
In

de
x

pe
r

pa
ck

et

500040003000200010000
Number of packet sequence

no pacing. (HZ=100) 1.0

0.8

0.6

0.4

0.2

0.0

Bu
rs

tin
es

s
In

de
x

pe
r

pa
ck

et

500040003000200010000
Number of packet sequence

without hardware pacing. (HZ=100)

1.0

0.8

0.6

0.4

0.2

0.0

Bu
rs

tin
es

s
In

de
x

pe
r

pa
ck

et

500040003000200010000
Number of packet sequence

with hardware pacing. (HZ=100)

10 msec. 1 msec.

RBP w H/W 1.5e-7 1.5e-7

RBP wo H/W 4.1e-4 5.0e-6

no RBP 0.31 0.31

1.0

0.8

0.6

0.4

0.2

0.0

Bu
rs

tin
es

s
In

de
x

pe
r

pa
ck

et

500040003000200010000
Number of packet sequence

without hardware pacing. (HZ=100)

Buestiness index result (1)

Buestiness index result (2)

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

Bu
rs

tin
es

s
In

de
x

pe
r

pa
ck

et

500040003000200010000
Number of packet sequence

no pacing. (HZ=100)

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

Bu
rs

tin
es

s
In

de
x

pe
r

pa
ck

et

500040003000200010000
Number of packet sequence

software only pacing. (HZ=100)

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

Bu
rs

tin
es

s
In

de
x

pe
r

pa
ck

et

500040003000200010000
Number of packet sequence

pacing with hardware. (HZ=100)

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

Bu
rs

tin
es

s
In

de
x

pe
r

pa
ck

et

500040003000200010000
Number of packet sequence

no pacing. (HZ=1000)

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

Bu
rs

tin
es

s
In

de
x

pe
r

pa
ck

et

500040003000200010000
Number of packet sequence

Software pacing only. (HZ=1000)

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

Bu
rs

tin
es

s
In

de
x

pe
r

pa
ck

et

500040003000200010000
Number of packet sequence

pacing with hardware. (HZ=1000)

CPU tick:10 m sec. CPU tick:1 m sec.

RBP with
software only

No RBP

RBP with
Hardware

Transmission Timer for UDP

• SO_TIMESTAMP is provided to obtain packet received time
information.

• struct timeval data accommodated as ancillary data with
recvmsg() system call.

• Receive only.

• To extend SO_TIMESTAMP at sending UDP datagram to specify
the time that the application expects.

Host System

Operating System

C
PU

 +
 m

em
or

y

Socket i/f

Application

IP

MAC

Device Driver

NIC

BU
S

UDP with
transmission timer

TCP

Application specifies time
packet should sent

time

delay

time

time

UDP

time

Socket i/f

time

time

time

time
delay

Conclusion

• Transmission timer approach for RBP

• Framework

• Implementation

• Result

• Is our approach including interlayer interaction
worse ?

• Does NIC vender interest this kind approach ?

