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TCP slow-start burstiness and RBP
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RBP TCP with OS scheduler

Interframe gap@ | 500Bytes packet size

Bandwidth | Interframe gap

® Interframe gap@higher 100Kbps | 120 msec.
bandwidth communication

<< OS scheduler tick
granularity as | - |0 m sec. |0Mbps 1.2 msec.

| Mbps |2 msec.

| 00OMbps 120 u sec.

® Precise rate based pacing
mechanism not to rely on
kernel scheduler is required. |0Gbps

| Gbps |2 u sec.

|.2 u sec.
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Requirement for precise packet pacing

® Precise packet pacing more than OS scheduler granularity
® Follow frequent interframe gap (rate) changing

® Re-order packet at sender host even on the same connection
stream.

® Free from upper layer

® Not depend specific transport protocol.
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NIC implementation

® Intel IXP2400 NP (Radisys ENP261 1) act as PCl GbE NIC

® 3 output queues: transmission timer, high priority, bast effort

® timer value (delay) specified in DMA descriptor by device
driver

® up to 100 milli second delay using 2 level scheduler
® 4,096 ring bin slots, 27 micro sec./slot

® NP scheduler, 26.7 nano sec. granularity
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RBP TCP implementation
® FreeBSD 4.10
® Add transmission time attribute to mbuf
® Add transmission time field of last segment to tcpcb
® Precise RTT measurement for computing interframe_gap :
interframe_gap = RTT x MSS/cwnd;

® Estimate tranmission_time for each segment:
tranmission_time
= interframe_gap + transmission_time of previous segment;
® Decide whether send it, or postpone next events:
iIf (transmission_time > current_time() + scheduler_tick)

tsleep(); sleep until next scheduler interrupt (— RBP with Software
elsef

update mbuf with transmission_time; <= RBP with HW
Ip_output();
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RBP TCP implementation (cont'd)

® Mainly modify tcp_output(), not to modify IP layer.
® Less than 1,000 line hacking in TCP
® more than 30,000 is TCP code in FreeBSD

® FreeBSD TCP stack does not record the buffer pointer last transmitted.
® Buffer traverse process is required at every packet.
® Suppress TCP throughput on large cwnd.
® borrowed from NetBSD 2.0 code.

® Too many referring RTC
® Suppress TCP throughput with original microtime()
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RTC performance

® ) function is provided by original FreeBSD

® microtime(): accesses RTC, higher accuracy result.

® getmicrotime(): returns cached value that is updated each scheduler interrupt
® light microtime(): to correct getmicrotime() result with CPU TSC (Time

Stamp Counter) on x86

e TSC counts CPU clock cycle

e Used for performance evaluation for program code.

® X 40 faster than original microtime() with enough accuracy.

elapsed TSC Sccuracy of result packet throughput limit
elapsed time Y due to RTC overhead
microtime() 16,000 count Micro sec 200K packets/sec.
5 micro sec. ' 2.4Gbps@ 1,500 Bytes/packet
etmicrotime() 89 count |-10 m sec. 330M packets/sec.
J < 30 n sec. (depend on scheduler) 3Tbps@ 1,500 Bytes/packet
light microtime() 360 count Micro sec 83 M packets/sec.
'S © 120 n sec. ' | Tbps@ |,500Bytes/packet
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RBP TCP experiment

® |Gbps/I100 m sec. delay (200 m sec.RTT) between sender and receiver

® no bott

eneck between sender and receiver

® Nno com

betitive flow

® Agelent Router Tester captured packets on sender side.

TCP Sender
DELL PE2650]
w EN2611 NIC

based

Network Emulator

1Gbps/100msec delay

TCP Reciever
DELL PE2650
w BCM5703

on ENP2611

Packet Capture
Agilent Router Tester
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Buestiness index on slow-start

® Bandwidth BW(t) and serialization delay sigma(t) derived as:
o BW(t) = cwnd(t) / RTT, sigma(t) = RTT/cwnd(t)

® cwnd(t) is assumed in exponential growth:
® cwnd(t) =27t/ RTT) x MS

® Packet delay d(i) at bottleneck:
o d(i) = max(d(i - 2) + sigma(t_i) - t_i-t {i-1},0) 90)

® Burstiness index b is derived normalizing with RTT:
® b(i) =d(i)/RTT, B = sum(b(i))

 BW(t) = cwnd(t) / RTT

® b(i) represents how much buffer is required at bottleneck by
the stream itself.

® [f b(i) = |: delay-bandwidth product size
® [f b(i) = 0: no buffer, complete RBP.
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Buestiness index result (2)
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Transmission Timer for UDP

® SO_TIMESTAMP is provided to obtain packet received time
information.

® structtimeval data accommodated as ancillary data with
recvmsg() system call.

® Receive only.

® To extend so_TIMESTAMP at sending UDP datagram to specify
the time that the application expects.
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Conclusion

® Transmission timer approach for RBP
® Framework
® |mplementation

® Result

® [s our approach including interlayer interaction
worse !

® Does NIC vender interest this kind approach ?
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