

## Network Protocol Testing Tool And

#### Protocol testing scenarios and environments

#### BIC LAB Department of Computer Science North Carolina State University



## Why?

- Theoretical and simulation study may have many pitfalls (needs verification !)
- Different results for different setups (No standard benchmarking metrics)
- No existing realistic evaluation suites for TCP Congestion Control Algorithms
- Needs for a standard protocol benchmarking test-bed which research (develop) community easily accept results based on it
- Needs for user friendly evaluation suites which supports diverse scenarios



#### **Overview** Evaluation (Benchmarking) Protocol Reporting Registration Telling and a state of the the set







![](_page_4_Picture_0.jpeg)

## Consideration

- Diverse benchmarking scenarios.
- □ More evaluation parameters (metrics).
- More fine-grained control in reporting and scenario generation.
- Integration with more realistic traffic generators (harpoon, tmix, etc.)
- User friendly GUI

![](_page_5_Picture_0.jpeg)

#### Parameters

- Buffer size (1MB to 32 MB)
- RTT (20 ms to 300ms or 500ms)
- Number of high speed flows
  - □ 4, 8, 16, 32, 64, 128 flows
- RTT Distribution
  - Same, uniform, exponential
- Type of background traffic
  - 10's different situations
  - Varying degree of fluctuations -- lognormal, Pareto
  - □ The amount
  - UDP (0 to varying degree; with what distribution)

![](_page_6_Picture_0.jpeg)

### Full test vs. subset

- Full and exhaustive testing
  - Required, but not useful for protocol development
- Subset -- some extreme cases
  - Quick turnarounds and check quick validity testing
  - Drive it to very extreme cases -- fix a few parameters to extreme values and vary the others.
    - Small buffers
    - Long RTTs
    - # of Flows (very small to large ones)
    - RTT distribution
  - □ For instance,
    - 1MB, 320ms, but vary the number of flows with or without RTT distribution.

![](_page_7_Picture_0.jpeg)

### Testing scenarios

- Stability test cases
- TCP friendliness
- RTT-fairness
- Intra-protocol fairness
- Convergence

![](_page_8_Picture_0.jpeg)

## Stability

- It is not convergence to equilibrium in a fluid model. It is very limited.
  - Can we study its stochastic behaviors?
  - Variations/CoV
    - What is impact of rate variance?
      - Utilization/Packet Loss/application goodput

![](_page_9_Picture_0.jpeg)

### TCP/UDP friendliness

#### Vanilla test

- □ Run one TCP flow w/ window limit (?)
- With one high speed flow of the same RTT
- Measure fairness index or throughput ratio.
- More sophisticated/useful one
  - In the presence of high speed flows (varying amount), run short-lived or long-lived flows with window limits.
  - Measure response time/transaction time/goodpout.
  - Run UDP flows with some real-time constraints
    - Measure ping delays and transaction delays.

![](_page_10_Picture_0.jpeg)

#### RTT-fairness test

- Two flows with different RTTs
- Measure their fairness index/throughput ratio.

![](_page_11_Picture_0.jpeg)

# Q & A

Thank you for your participation