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Background

Video is an important Internet application
o Pre-stored video clips, e.g., video-on-demand
o Real-time streams, e.g., live broadcast, online gaming

Video streaming is a long time research interest

o Many schemes proposed for adaptive congestion/rate control
o Sender-based, e.g. Binomial algorithm (generalized AIMD)

o Receiver-based, e.g. TEAR

o Equation-based, e.g. TFRC

Video streaming to wireless/mobile devices
o Getting popular with prosperity of wireless technologies
o Congestion/rate control for wireless video is different
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VTP: Designed for Wireless UCLA

Prior work on congestion/rate control of video streaming:
o TCP-like: not suited for real-time/interactive apps:

Fluctuations in instantaneous rate

Large buffering at client is needed, incurring delays
o TFRC: not robust to wireless loss

Efficiency drops in wireless networks

VTP goal:

Develop a rate congestion/control mechanism to support

smooth, efficient, friendly real-time video streaming in wireless
networks.




VTP Features

VTP is a congestion/rate control protocol
o Targeting real-time adaptive video streaming

VTP provides:

o Smoother congestion control (new)

o Robustness to random loss (new)

o Friendly co-existence with TCP and other traffic

VTP features rely on two key components
o Achieved Rate Estimation
o Loss Discrimination techniques

VTP can be integrated into DCCP as a congestion control option
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Achieved Rate Estimation

Achieved Rate (AR): rate that sender has pushed
through the bottleneck link successfully.

AR Is measured at receiver by counting received
bytes, plus (estimated) bytes lost due to errors.

AR Is good indication of the “appropriate” sending
rate when packet loss is detected

o Cleverer than “cutting by half”
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l.oss Discrimination Algorithm UCLA

Differentiate congestion and
random packet loss

o Only congestion loss triggers rate
reduction

o Robust to random loss

Many e2e LDAs exist
o We choose a variant of Spike

o ldea: large RTT indicates imminent
congestion

o Spike is accurate in wireless LAN
scenarios that VTP targets

Time

Spike:

RTT > b: congestion
RTT < a: error
a<RTT<b: no change



Mimicking TCP Sending Rate Dynamics  UCLA

B = buffer size .
sender receiver

AN

P = pipe size \
C = capacity

Start from simple topology
o Single hop, single flow

o Assuming buffer size = pipe size
Pipe size: bandwidth-delay product



TCP Instantaneous Sending Rate UCLA
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0 RTTmin/RTTmax correspond to
empty/full queue buffers

Observation:

o When cwnd is cut by half,

iInstantaneous sending rate is
cut to near-zero.

o Rate bounces back up much
faster than cwnd.

(See additional slides at the end for
detailed illustration)



VTP matches TCP effective Rate UCLA

sending rate
A

C+1/RTT

Based on TCP behavior shown on previous slide
When rate is reduced, VTP avoids “near-zero”.
o Less reduction stretched over longer period.

Let Al = A2, VTP and TCP give up the same amount of data upon a
congestion packet loss.



Ns2 Simulation Setup UCLA

Base Station O

Intemet Servers Wireless Clients

Mixed wired-wireless scenario
o All flows go from Internet servers to wireless clients
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Smoothness and Efficiency (cont'd)  UCLA

Previous slide compares “smoothness” and “efficiency”
between VTP and TFRC

o On/off CBR traffic changes the available bandwidth over time

o Upper-left figure shows the available bandwidth seen by VTP or
TFRC flow

Comparison of VTP and TFRC

o 0%, 1% and 5% packet error rates are tested
0% and 5% results are shown on next slide

o VTP retains smoothness and efficiency as error rate grows
o TFRC has sharply degraded efficiency as error rate grows
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In 0% error, VTP shares bandwidth equally with TCP
o TCP overshoots and times out, yielding the poor performance at

the beginning

o VTP/TCP converge to the fair share after TCP ramps up
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In 5% error, VTP utilizes bandwidth left by TCP

o TCP dies by itself with very low throughput

o VTP picks up “residual” bandwidth that would otherwise become
unused

o We call this “opportunistic friendliness”

140
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VTP Status

= VTP is implemented in
RTP/RTCP in Windows

= Evaluated in a hybrid
simulation testbed

= Ongoing work: VTP as a

congestion control option
in DCCP
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