

Chelsio Communications

The State-of-the-Art of TOE Technology

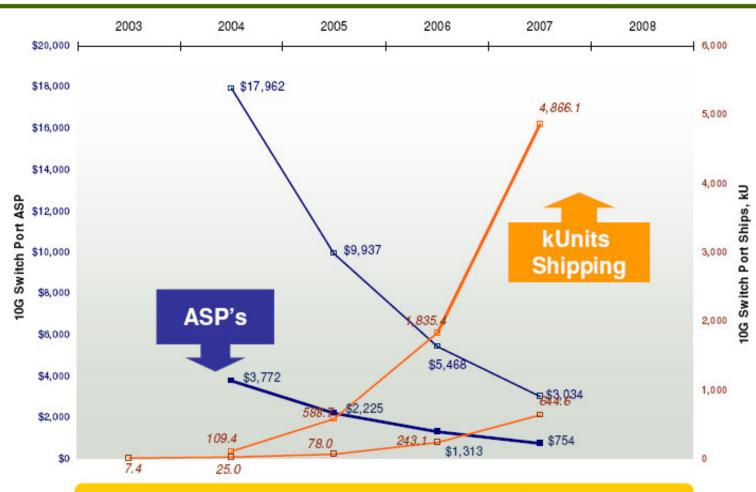
Michael Chen, PhD PFLDnet2006 Presentation, Feb. 2006

Agenda

- Technology Trend
- 10GbE TOE Architecture
- TOE Support of LFN
- 10GbE TOE Performance
- Network Convergence and ULP Acceleration

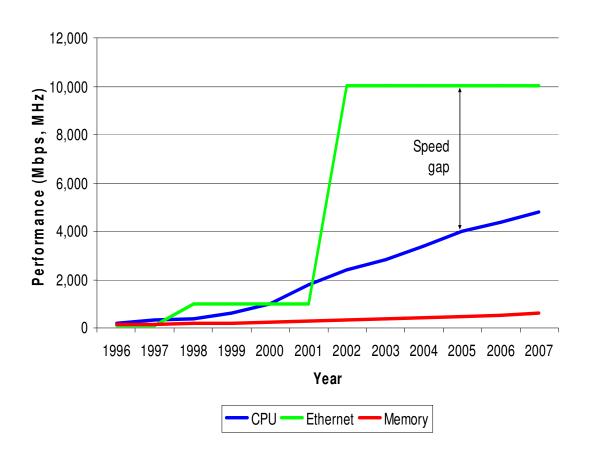
Ethernet's History of Absorbing Proprietary Networking Technologies

1970	ArcNet	
	OmniNET	
1980	DecNet	Ethernet – 10Mb
1000	FDDI	
1000	Token Ring	
1990	ATM	Ethernet – 100 Mb
	HIPPI	
2000	Fibre Channel	Ethernet – 1 Gb
	Quadrix	Ethernet – 1 Gb
	Myrinet	
	Infiniband	Ethernet – 10 Gb


10G Ready for Prime Time

Criteria	Market Drivers / Enablers	
Units growth	 3x volume growth in the 10GbE NIC market in 2006 (synergy report) 3x volume growth in 10GbE switch market in 2006 (Dell'Oro) iSCSI market growing at 50% per quarter 55% of top 500 HPC installations are Gb Ethernet 	
Infrastructure	 High density 10GbE optical switches available now High density 10GbE CX4 switches available now Low latency switch chips available from at least 4 vendors UTP PHY chips available from at least 3 vendors 	
Prices	 XFP over 12 months has dropped by more than 100% CX4 switch port at \$700/port list price now CX4 adapter pricing dropping past the knee 10GbE HBA pricing has been halving every 12 months 	
Standards	10G CX4 (copper media) introduced and shipping10G-baseT silicon expected by year-end	

10GbE is **Beating Forecast**



With CX4, HBA prices are at 2007 levels

The Speed Gap

The Network/System Speed Gap

- Rule-of-thumb: 1GHz of CPU needed to process 1Gbps data rates
- At 10Gbps, today's highest performance CPUs lag by 2.5x
- In 2006, 10GbE fullduplex (20Gbps) will further widen the gap
- Memory speeds lag even further behind and will become main obstacle in the future
- The SOLUTION is <u>Protocol Offload</u>

Ethernet Popular HPC Deployments

2003 Top Supercomputer Cluster Interconnects					
	Clusters	%	Servers	%	Avg Server/Cluster
Ethernet	88	55%	15,112	53%	172
Myrinet	57	35%	8,890	31%	156
InfiniBand	3	2%	1,484	5%	495
Quadrics	9	6%	2,608	9%	290
SCI	4	2%	310	1%	78
Total	161	100%	28,404	100%	176
Source Top500.org Nov 2003 (161 new clustered systems were added to the list)					

Ethernet is the *dominant*High Performance Cluster Interconnect
Today!

Chelsio Product Family

N210: 10GbE Server Adapters

T210: 10GbE Protocol Engines – Fiber & Copper Server Adapter + TCP + iSCSI + RDMA

T204: 4-port 1GbE Protocol Engines

Protocol software and drivers

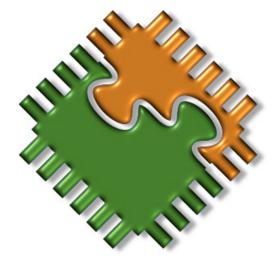
10GbE PHY Technologies

Fiber

– 10GBase-SR 85 m shipping

– 10GBase-LR 10,000 m shipping

Copper

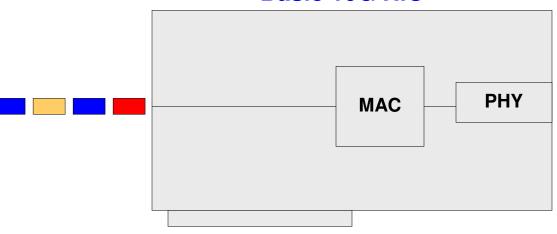

– 10GBase-CX415 m shipping

– 10GBase-T55-100 m

Backplane

– 10GBase-KX4 0.5-1 m

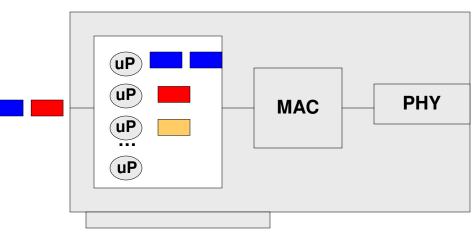
10GBase-KR 0.5-1 m


Chelsio Communications

TOE Architecture

Alternative 10G Solutions

Basic 10G NIC

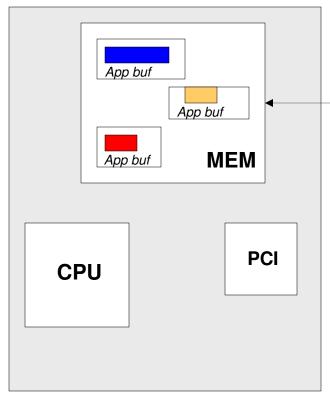


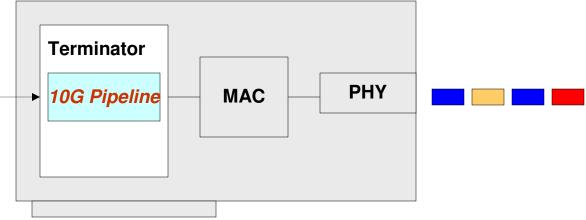
- Layer-2 protocols only
- No protocol offload intelligence

- Saturates host CPU
- Inadequate for high-performance

Multi-RISC based Architecture

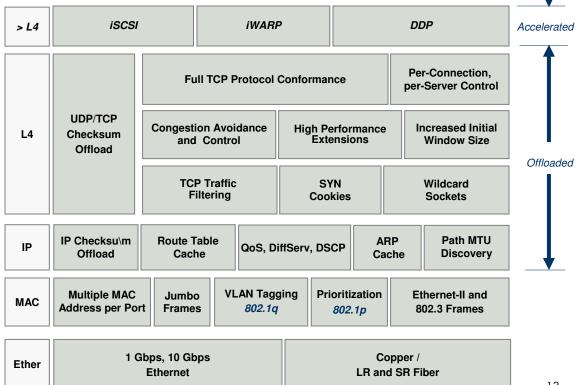
- Offload engine consists of multiple RISC cores
- Each TCP connection's bandwidth limited by the core frequency


- Complex internal software for control & management of multiple cores
- Inadequate single channel performance & scalability


Chelsio's Unique Architecture Chelsio

Host

Chelsio Terminator Architecture


- Optimal partitioning of functions between hardware, firmware and software
- 10G VLIW processor delivers highest performance from 1 to 1000s of connections
- Pipelined architecture uses cut-through processing for low latency
- Direct data placement into application buffers eliminates copy overhead

"Terminator" Processor ASIC

- Cut-through, wire-speed architecture
- Scalable from 10G to 1G line speeds
- TCP, iSCSI, RDMA, DDP acceleration
- 400+ configuration registers
- Programmable TCP rules per connection

10GE TCP Processing

- Current generation NPU not good match for 10GE TCP processing
- TCP at 10Gb characteristics and requirements
 - Stateful protocol -> efficient RMW
 - Large number of connections -> scalable architecture
 - Jumbled byte stream -> intelligent memory system
 - < 10us latency requirement -> cut-through processing
 - Still an evolving protocol -> programmability

10GE VLIW TCP Processor Innovation

The TCP protocol is stateful

- At 10Gbps, 1500 byte packets are 1us apart
- TCP state has poor cache locality
- Wire speed needs to be attainable for 1 connection
- Wire speed needs to be attainable for 1000s connections

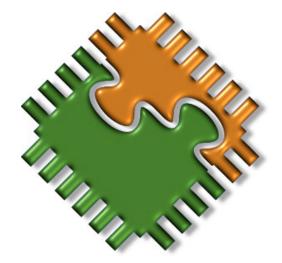
- Requires

- An efficient pipelined pre-fetch of the TCP state
- Single engine that can process 10Gbps traffic

10GE VLIW TCP Processor Innovations

- The TCP protocol provides a FIFO stream abstraction to the end points
 - Packets can partially overlap and/or arrive out of order
 - Latency requirement rules out store-and-forward
 - Requires
 - Specialized memory subsystem to unravel the packet jumble @10Gbps speeds

10GE VLIW TCP Processor Innovations



- There are stringent end-to-end latency requirements (< 10us) in addition to high BW requirement (10Gbps)
 - This requires cut-through processing
 - Cut-through processing refers to the packet arriving on one terminal, being processed and the being forwarded out the other terminal without ever being stored in off-chip memory
- Measured end-to-end latency < 10us with L2 switch
 - DMA engine used interrupts but could push number lower by using polling mode

Optimized Architecture

	10G VLIW	Multi-RISC
Scalability	Unlimited	Limited by # of CPUs
Firmware Complexity	Low	Typically 1+ year firmware debug
Cache Capacity	Unlimited	Limits maximum # of accelerated connections
Performance Profile	Linear, uniform bandwidth per connection	Falls off once IPC becomes significant
Roadmap	Low-risk upgrade path	Complex firmware more difficult to scale

Chelsio Communications

TOE Support of LFN

Congestion Control in LFN

- RFC 3649: Highspeed TCP
- In Congestion Avoidance,
 - for each ACK, increase the window by
 - w = w + a(w) / w

```
Note: in standard TCP a(w)=1 // when w is maintained by #segs a(w) = mss * mss // when w is maintained by bytes
```

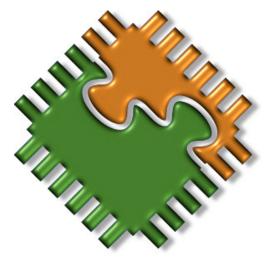
For each congestion event, decrease the window by

•
$$W = (1-b(W)) * W$$
, // where $0 < b(W) <= 0.5$

Congestion Control in LFN

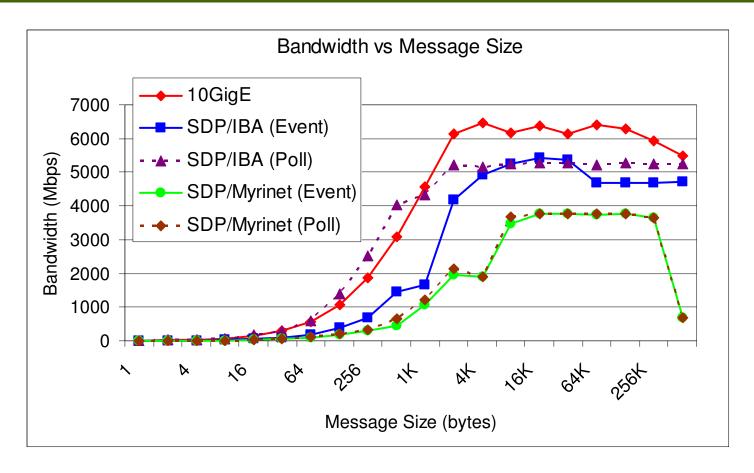
Table-driven Implementation

- For each ACK received, using current w as index to lookup a table for a(w)
- For each congestion event,
 using current w as index to
 lookup a table for b(w)
- The lookup table is SW configurable which provides the max flexibility for various LFN environments.


AB-Table

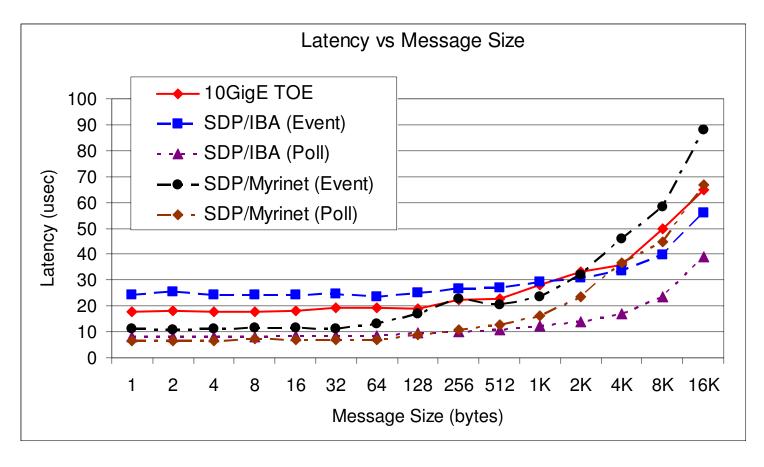
W	A(w)	B(w)
< 38	1	0.5
38 (56k)	1	0.5
118 (172k)	2	0.44
221 (322k)	4	0.41
•••		
5610 (11M)	21	0.24
83000 (120M)	70	0.09

Traffic Pacing and Shaping


- Researches [Hiraki-SC04, etc] indicated the importance of pacing TCP streams across LFN to reduce the traffic burstness
- SW traffic pacing/shaping at 10Gb rate is CPU intensive
- TOE enables HW traffic pacing at TCP level

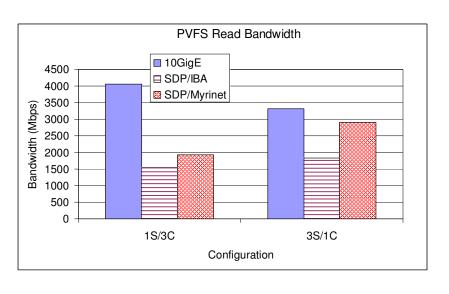
Chelsio Communications

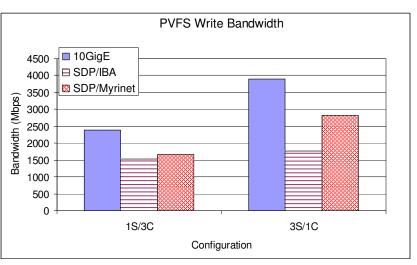
TOE Performance



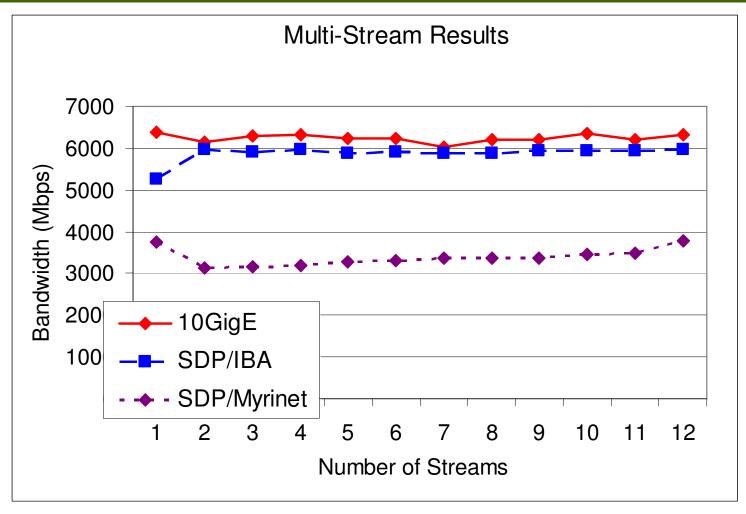
Source: Head-to-TOE Evaluation of High-Performance Sockets over Protocol Offload Engines by DK Panda et al Test configuration: 4-node cluster connected through 10GbE switch running single connection

System configuration: Dual 32-bit Intel Xeon 3.0GHz processors running Red Hat 9.0 Linux kernel 2.4.25smp

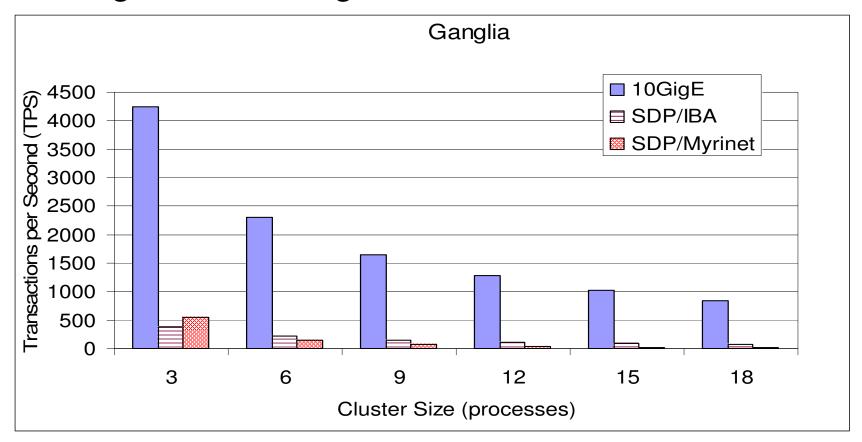



Source: Head-to-TOE Evaluation of High-Performance Sockets over Protocol Offload Engines by DK Panda et al Test configuration: 4-node cluster connected through 10GbE switch running single connection

System configuration: Dual 32-bit Intel Xeon 3.0GHz processors running Red Hat 9.0 Linux kernel 2.4.25smp


 Parallel Virtual File System (PVFS) – concurrent read/write performance

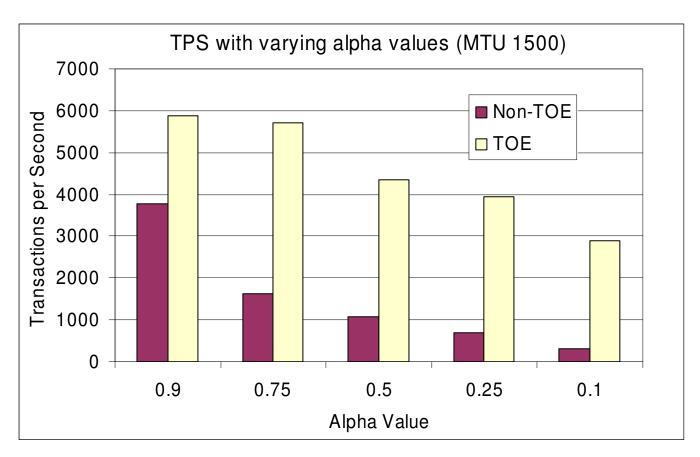
Source: Head-to-TOE Evaluation of High-Performance Sockets over Protocol Offload Engines by DK Panda et al Test configuration: 4-node cluster connected through 10GbE switch running single connection System configuration: Dual 32-bit Intel Xeon 3.0GHz processors running Red Hat 9.0 Linux kernel 2.4.25smp



Source: Head-to-TOE Evaluation of High-Performance Sockets over Protocol Offload Engines by DK Panda et al Test configuration: 4-node cluster connected through 10GbE switch running single connection

System configuration: Dual 32-bit Intel Xeon 3.0GHz processors running Red Hat 9.0 Linux kernel 2.4.25smp

Ganglia Monitoring


Source: Head-to-TOE Evaluation of High-Performance Sockets over Protocol Offload Engines by DK Panda et al Test configuration: 4-node cluster connected through 10GbE switch running single connection

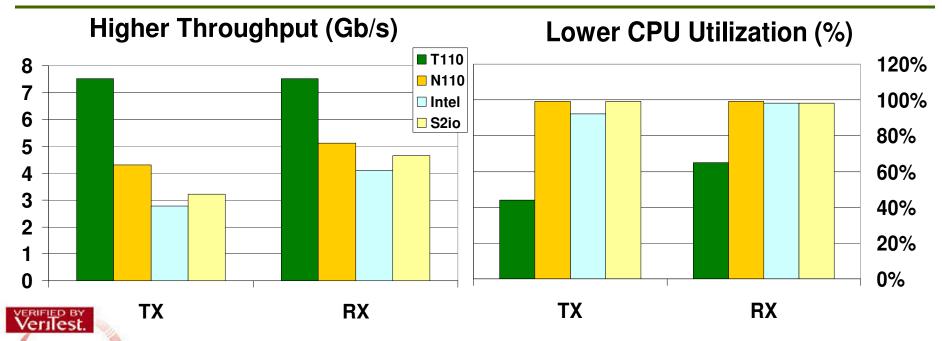
System configuration: Dual 32-bit Intel Xeon 3.0GHz processors running Red Hat 9.0 Linux kernel 2.4.25smp

OSU/LANL Benchmarks 10GbE TOE vs 10GbE NIC

Apache Web Server

Source: Performance Characterization of a 10-Gigabit Ethernet TOE by Wu Feng et al
Test configuration: 4-node cluster connected through 10GbE switch running single connection
System configuration: Quad AMD Opteron 2.0GHz processors running Suse Linux with 2.6.6 stock kernel

Sandia Benchmarks 10GbE TOE vs IB & 10GbE NIC



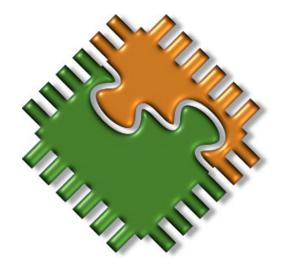
Source: Infniband and 10-Gigabit Ethernet for I/O in Cluster Computing by Helen Chen et al Test configuration: 8-node cluster connected through 10GbE switch running IOzone System configuration: Dual AMD Opteron 2.2GHz processors running Linux kernel 2.4.25smp

Chelsio Competitive Advantage

<u>Source</u>: Independently verified by VeriTest, Inc.

Test tool: netperf

Testing by

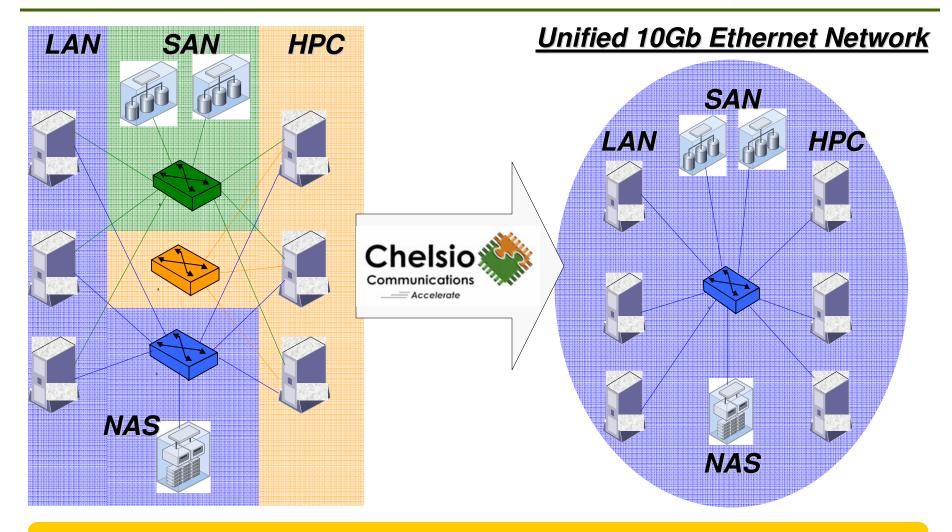

the World's Leading

Independent Lab

<u>Test configuration</u>: 2 systems connected through 10GbE switch running single TCP channel with 1500-byte Ethernet frames

System configuration: AMD Opteron 248 2.2GHz uniprocessor running Linux kernel 2.6.6

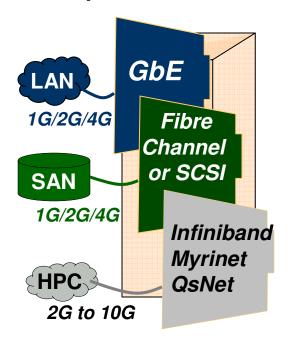
- T110 achieves 2x network throughput vs basic 10GbE NICs
- T110 utilizes only ½ x CPU resources vs basic 10GbE NICs
- RESULT: T110 delivers 4x performance efficiency vs NICs



Chelsio Communications

Network Convergence & ULP Accelerations

Network Fabric Convergence

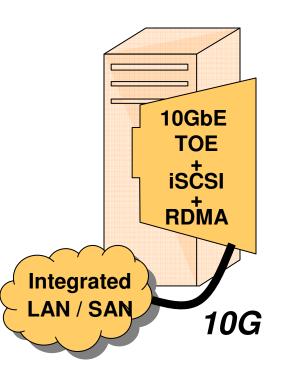


Simplified network architecture – reduced operating costs

Simplified Server Architecture

Current Implementations

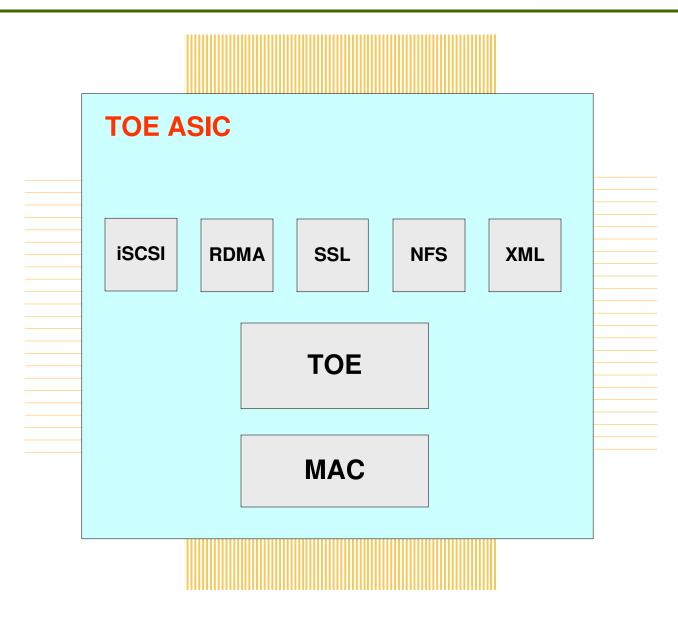
Convergence Benefits


Lower Total Cost of Ownership

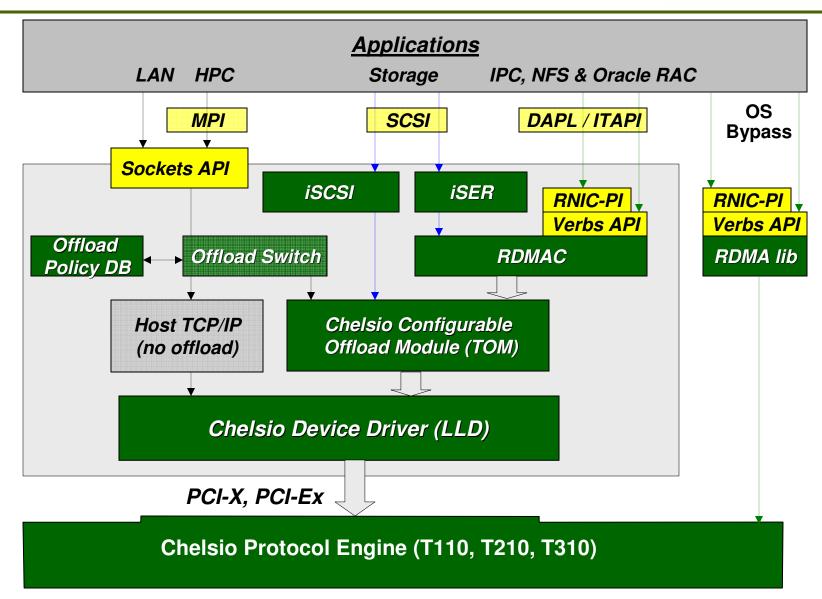
- Improves CPU efficiency
- Minimizes software licenses
- Simplifies data center wiring
- Leverages staffing skills & tools

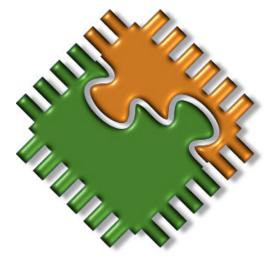
Higher Performance & New Apps

- Improves cluster performance
- Lowers application latency
- Faster backup and recovery
- Enables storage applications

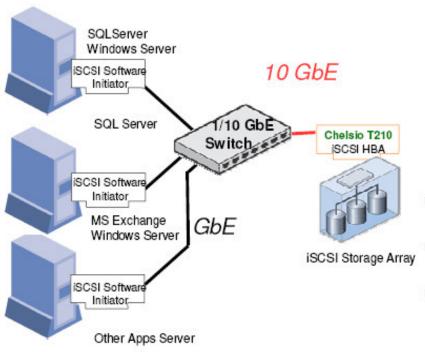

Chelsio's 10GbE Solution

Improved performance – reduced operating costs


TOE Enables ULP Acceleration

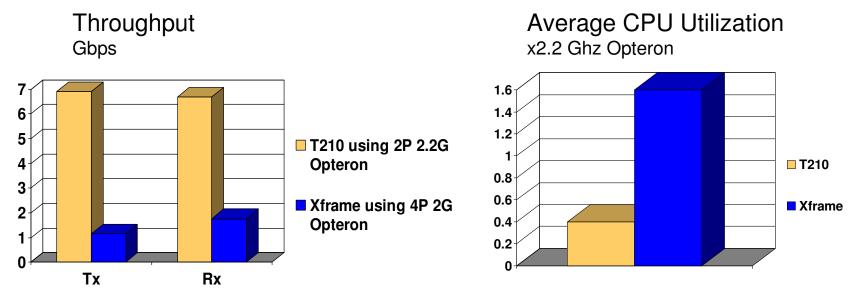


Software Architecture



Chelsio Communications

iSCSI over TOE


10GbE Best Suited for Storage Chelsio

- Free client scalability
 - Free software initiators
 - Free GbE ports with ALL servers
 - HBAs not required for GbE initiators
 - GbE speed adequate for servers
- Similar Target costs to IB, FC
- No change to existing Apps
- Little change to infrastructure

Chelsio iSCSI Performance vs basic 10GbE NICs

<u>Sources</u>: T110 iSCSI Performance Analysis by Veritest and Xframe iSCSI Performance Analysis WP Published by Neterion <u>Note</u>: Charts show performance at 4KB I/O size; iSCSI applications are transactional in nature using 2-4KB I/O sizes

- T210 achieves 4x iSCSI network throughput vs basic 10GbE NICs
- T210 utilizes only ¼ x CPU resources vs basic 10GbE NICs
- RESULT: T210 delivers 16x iSCSI performance efficiency vs NICs

T210 iSCSI Target Performance

	Throughput	Avg. CPU
Read	828MB (TOE)	35%
Write	857MB (TOE)	46%

	IOPS	Avg. CPU
Read	544k (TOE)	88%
Write	539k (TOE)	99%

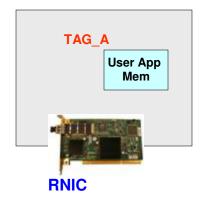
Target Configuration:

- CPU: 2 x 2.2GHz Opteron
- SW: Linux 2.4.25 and Chelsio Reference iSCSI stack
- IOmeter benchmark
- 28 GbE Microsoft Initiator to one 10GbE Target

Chelsio Communications

RDMA over TOE

The Benefit of RDMA



- User space I/O
- OS bypass
- Direct Data Placement (DDP) and zero-copy
- Very low latency
- Very low CPU utilization

RDMA Operations

Machine A

Machine B

SEND ("move 2MB from A to B, here is A's mem tag")

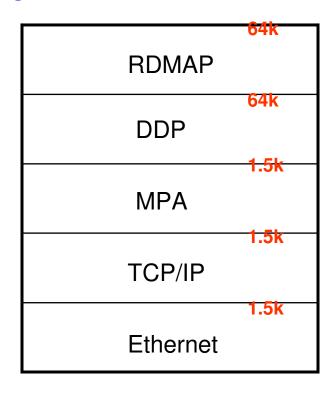
RNIC operation only. Host not gets Involved.

RDMA-READ ("from TAG_A, off=0, to TAG_B, offset=0, len=64k")

RDMA-READ-RESP ("here is the 64k data to TAG B, offset=0")

SEND ("done with the move 2MB from A to B")

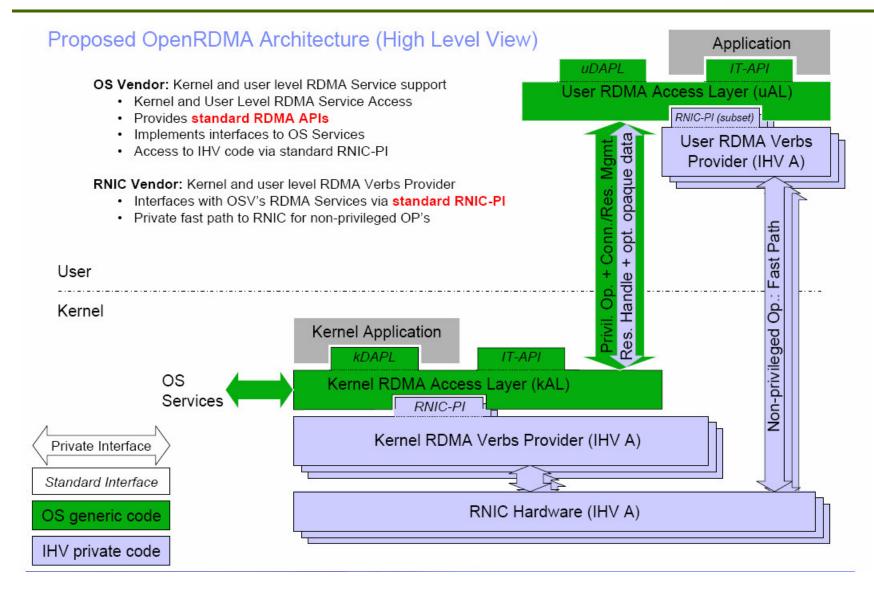
RDMA Protocol Stack



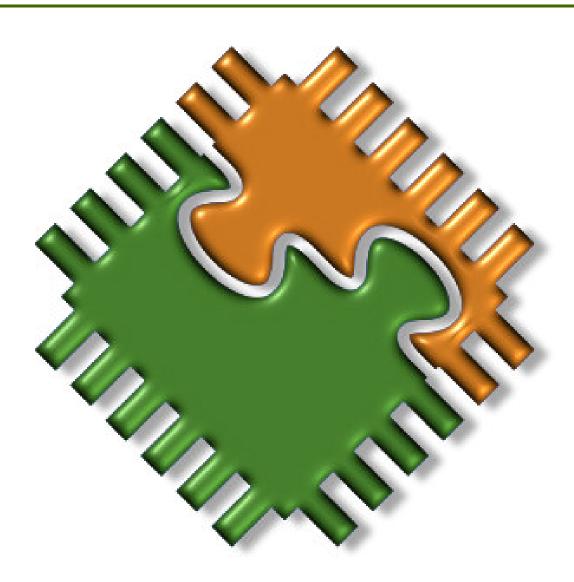
Oracle Parallel DB NFS Over RDMA

iSER

ULP


RNIC HW

- RDMA Ops: RDMA Read, RDMA Read Response RDMA Write, Send
- ULP Message segmentation and reassembly
- Out-of-order placement
- In-order delivery
- Framing and CRC
- FPDU aligned with pkt, multiple FPDU in one pkt.
- Marker handling (Start from ISS, every 512B)


RDMA Software Architecture

Thank You!

