Can high-speed transport protocols be deployed on the
Internet? : Evaluation through experiments on JGNI|I

Kazumi Kumazoe
National Institute of Information and

Katsushi Kouyama
Kyushu Electric Power Co.,Inc.,

Masato Tsuru Yuji Oie
Dept. of Computer Science and Electronics,

Communications Technology kouyama@kyushu.jgn2.jp Kyushu Institute of Technology
3-8-1 Asano, Kokurakita-ku, {tsuru, oie} @cse kyutech.ac.jp
Kitakyusyu-city, Fukuoka, Japan, Yoshiaki Hori

kuma@kyushu.jgn2.jp

Dept. of Computer Science and

Communication Engineering,
Kyushu University
hori @csce.kyushu-u.ac.jp

Abstract— While a variety of high-speed transport protocols
have been proposed to meet the requirement of high throughput
data transfer over fast long-distance networks, less attention
has been paid to the problems involved when those transport
protocols are deployed in heterogeneously shared network envi-
ronments like the global Internet. We are investigating several
high-speed transport protocols: HighSpeed TCP, Scalable TCP,
FAST, CUBIC, HTCP and UDT, through experiments over the
Japan Gigabit Network (JGN)II, an open 10Gbps-class high-
speed network testbed in Japan, mainly focusing on the following
question - what will happen if these protocols are run on the
Internet? In this paper, some results of ongoing experiments are
reported: characteristics of these transport protocols in cases
with realistic conditions, e.g., a variety of receiver-side OSs,
coexistence of short-lived TCP flows, or coexistence of constant
bit-rate UDP flows. Our preliminary results indicate that these
protocols are neither effective nor efficient in terms of network
resource sharing if they are running with Internet application
traffic such as a number of short-term web browsing flows or
long-term video streaming flows.

I. INTRODUCTION

In response to the emerging requirements for high through-
put data transfer on fast long-distance networks in distributed
data processing and data sharing such as Grid, a variety of
high-speed transport protocols have been proposed. Among
them, there are two practical end-to-end approaches. one is
modification of the congestion control mechanism in TCP
at the sender-side, and the other is implementation of new
transport protocols over UDP. Their performance (throughput
characteristics) in dedicated and/or homogeneous networks
have aready been studied and reported through various ex-
periments on worldwide testbeds (e.g., [1],[2]).

On the other hand, the bandwidth of the Internet has
been increasing more and more in both access networks and
core networks. In Japan, for example, 1 Gbps broadband
access (FTTH) services have recently become available at a
considerably low price, and 10 Gbps services might become
reality in the near future. In such situations, Internet users
including large application service providers (ASPs) may like
to use high-speed transport protocols on the Internet to transfer

a larger amount of data, regardless of the intention and/or
scenario of the original developers of those protocols. How-
ever, little attention has been paid to the problems involved
when those transport protocols are deployed on shared and
heterogeneous networks such as the globa Internet.

Therefore, we started investigating severa promising high-
speed transport protocols. HighSpeed TCP (HSTCP)[3], Scal-
able TCP[4], FAST[5], CUBIC[6], HTCP[7] and UDTI[8],
through experiments over the Japan Gigabit Network (JGN)
11[9], an open 10 Gbps/1 Gbps Ethernet-based network testbed
in Japan, mainly focusing on the following question — what
will happen if those protocols are running on the Internet? In
this paper, following the previous experimentg[2] in which we
mainly examined how a change in network conditions (e.g.,
amount of background traffic, bandwidth, propagation delay,
packet loss, and packet misordering) affects the throughput
characteristics, we try to examine what happens in cases with
more realistic conditions such as, avariety of receiver-side OSs
(Linux, Windows XP, and FreeBSD), coexistence of flows with
different RTTs and different protocols, coexistence of short-
lived TCP flows (e.g., web browsing flows), or coexistence of
constant bit-rate UDP flows (e.g., video stream flows).

This paper is organized as follows. Section 2 explains the
configuration of the experimental environments on JGNII.
The experimental results are explained in Section 3, which
is followed by some closing remarks in Section 4.

Il. CONFIGURATION OF OUR EXPERIMENTS ON JGNI |

Figure 1 shows the network configurations in our ex-
periments. (a) the network emulator path (by Hurricane 11
from PacketStorm), (b) the JGNII domestic loopback path,
(c) the network emulator and the JGNII domestic loopback
path, and (d) the JGNII path between the US and Japan.
The properties of each path are listed in Table | for JGNII
Domestic Line (Kitakyushu-Tokyo-Kitakyushu), JGNII Inter-
national Line (Kitakyushu-Chicago), and Network Emulator in
which both RTT and bandwidth are configurable. While both
JGNII domestic and international lines provide a maximum of

10[Gbpg] in its bandwidth, in this paper, we only show the
results where the bottleneck bandwidth is limited to 1[Gbps]
a the links (from end-hosts and to upstream) of the edge
routers. The default value of 127 was mainly used as the output
buffer size of the edge routers, GS4000 in Fig. 1, because
a dedicated performance tuning of network nodes does not
match our intention. A larger buffer size of 512, however, was
also used to investigate the impact of buffer size of the edge

routers.

Kitakyushu
1Gbps
GS4000-160E

| @
ﬁ GS4000-160E

Kitakyushu

|
ﬁ 1Gbps

&= oI
| 1Gbps ~ (domestic),
¥ GS4000-160E— GS“OOO 1608

=
PacketStorm

Kitakyushu

il

Kitakyushu

il
il

1Gbps

PacketStorm

(a) network emulator

10Gbps lepS

(b) emulator and JGNII domestic line
0Gbps

Kitakyushu JGNII Kitakyushu
_ (domestlc)
ﬁ 106k \, 1/1oebps ﬁ
GS4000-160E 1Gbps GS4000-160E
|
Kitakyushu |]

. PacketStorm
(c) emulator and JGNII domestic line

ﬁ 1/10Gbps
@ JGNII Starnght

i gnternitio/ngy
S— S —
GS4000-160E el ToGhne
(d) international line

Fig. 1. Network Configuration

1llonps

GS4000 160E ﬁ
The output of the traceroute command on the international
lines is as follows.

Kitakyushu to Starlight :

traceroute to 206.220.241.15, 30 hops max, 38 byte
packets

1 202.180.37.33 1.967 ms 1.833 ms 1.868 ms

2 203.181.249.126 134.043 ms 121.542 ms 117.437 ms
3 203.181.248.217 199.874 ms 200.385 ms 199.753 ms
4 192.203.116.10 181.276 ms 181.257 ms 181.269 ms

5 206.220.241.15 181.392 ms 181.270 ms 181.263 ms

Starlight to Kitakyushu:

traceroute to 202.180.37.34 (202.180.37.34), 30 hops
max, 38 byte packets

1 206.220.241.244 5.202 ms 0.224 ms 0.219 ms

2 192.203.116.9 19.350 ms 18.306 ms 18.305 ms

3 203.181.248.218 180.502 ms 181.464 ms 195.447 ms
4 202.180.34.157 162.540 ms 162.526 ms 162.574 ms

5 202.180.34.154 183.132 ms 196.023 ms 182.979 ms

6 202.180.37.34 181.228 ms 181.279 ms 181.367 ms

TABLE |
PATH CHARACTERISTICS

Bandwidth[Mbps] RTT[msec]
Network Emulator 0-1000 0.1-10000
JGNII International Line 10000 approximate 180
JGNII Domestic Line 10000 approximate 38
TABLE Il
TARGETED PROTOCOLS
Protocol Version
HSTCP patch for Linux 2.4.19
Scalable TCP| patch for Linux 2.4.19
FAST running on Linux 2.4.20
CuBIC patch for Linux 2.4.25
HTCP running on Linux 2.4.20
ubT version 2.0

For al paths in our experiments, when the bottleneck
bandwidth was 1[Gbps], a UDP flow by Iperf could achieve
the throughput of 940[Mbps] without packet losses.

We targeted seven high-speed transport protocols and used
their implementations provided by the researchers as show
Table II. The changes from our previous work ([2]) were
adding HTCP and replacing BIC to CUBIC as its successor.
We investigated throughput characteristics for TCP flows,
and packet loss and delay jitter for UDP flows, which were
measured by Iperf as performance measures.

Table 111 shows the sender and receiver equipment spec-
ifications. We adopted Linux (RedHat 9.0 Kernel 2.4.20)
as the sender-side OS in our experiments mainly because,
expect for UDT, the function codes are provided as patches
for the source code of Linux. We tuned various parameters,
e.g., Linux txqueulen, system memory, and RxDescriptors of
the NIC(e1000) driver, based on the technical information
provided in the web pages of each of the targeted protocols.

I1l. EXPERIMENTAL RESULTS

In this section, we show the results in several scenarios,
some of which are similar to the scenarios of our previous
paper ([2]). Compared with the configuration in [2], however,
in the new configuration of Fig. 1, the network emulator and
the edge routers accommodating end-hosts were replaced, and
the routes of paths between Japan and the US were changed.
The results in those scenarios would allow us to confirm the
generdlity if the old results and new ones are consistent.

Note that the JGNII paths accommodate other constant
or temporary traffic in general. To avoid the influence of

TABLE 11l
EQUIPMENT SPECIFICATIONS

Endhost in Chicago Endhost in Kitakyushu
0S Debian Linux Red Hat Linux 9.0 Kernel 2.4.20
CPU Xeons 2.4[GHz] ,opteron Xeons 3.2[GHz]
Memory 1[GByte] 2[GByte]
PCI BUS 64[bit]
NIC (1[Gbps]) Intel Pro(e1000) [Intel Pro(e1000)

unexpected large background traffic, we conducted several
trials in each experiment with the same configuration, and then
discarded irregular cases. Unless otherwise noted, the results
shown hereafter are for the cases exhibiting a relatively good
throughput performance.

In addition, when we observed similar tendencies on
HSTCP and Scalable TCP, we only showed the characteristics
of one of them.

A. Basic Characteristics of each Protocol

Figure 2 illustrates the throughput characteristics on asingle
flow of each targeted protocol in the configuration shown
in Fig. 1 (@), which indicate a stable (and thus a basic)
throughput characteristic in an ideal network with no (or very
few) packet loss. We configured the RTT to 180[msec] in
network emulator, which emulates the configuration shown in
Fig. 1(d).

In Fig. 2, we can observed that, while every high-speed
transport protocol flow achieved a high throughput near to
1 [Gbps], the behaviors of these flows in increasing and
decreasing throughput are different.

RTT=180[msec], BUF=127

1000

800 [
600 [1/

400 <0

Throughput[Mbps]

200

Fig. 2. Throughput of a single flow(Emulator)

Figure 3 presents the throughput characteristics of a single
flow of each targeted protocol in the configuration shown in
Fig. 1(d). The output buffer size at the edge routers were set
to 127 or 512. Compared with Fig. 2, Fig. 3 shows dightly
unstable throughput characteristics for all protocols, which
might come from the difference between emulated and actual
networks even though the RTTs in both cases were nearly
identical. For example, the number of intermediate nodes and
the existence of cross-traffic are different. Therefore, we run
our experiments in both environments if possible: using the
network emulator to investigate the basic characteristics and
using the JGNII lines to investigate more realistic characteris-
tics.

The upper graph in Fig. 3 shows cases with the buffer size of
127 at the edge routers, while the lower one shows cases with
the buffer size of 512. A large difference in their throughput
characteristics of FAST and Scalable TCP flows was observed.
The throughput of FAST flow was greatly improved setting
buffer size at the edge routers larger. When the buffer size
was set to 127, packet losses were observed on FAST flow,

while no packet losses on the FAST flow when the buffer size
was 512. On the other hand, the throughput of Scalable TCP
flow seemed unstable in case with a larger buffer size of the
edge routers. In fact, the averaged throughput of a Scalable
TCP flow for the buffer size of 127 is 450 [Mbps], while 300
[Mbps] for the buffer size of 512.

BUF=127

1000

800 r

600 -

400 | i

Throughput[Mbps]

-/Scalable

200

100

BUF=512

1000

s AT

600 |- if

400 |

Throughput[Mbps]

200 H 4 [Scalable *

j ; FAST
CuBIC]
JHTCP -l
0 20 40 60 80 100
sec

Fig. 3. Throughput of a single flow (International Line)

B. Variety of receiver-side OSs

We adopted Linux as the sender and receiver side OS
basically. In this subsection, the performance are shown when
the FreeBSD (ver.5.3) and Windows XP (SP2) were adopted
as a receiver side OS in the configuration shown in Fig. 1(a),
First we tuned the parameters of each OS such as the socket
buffer size according to the technical information in [10].

Figure 4 illustrates the throughput characteristics of asingle
flow for FreeBSD and Windows XP of the receiver side
OS. Basicaly we observed that all protocol flows (except for
standard TCP) could achieve high throughput regardless of the
kinds of receiver side OS. That is, the mgjority of users on the
Internet are ready to fill up the bandwidth up to 1[Gbps] as
receivers if the sender employs such the high-speed transport
protocols.

Note that, while every high-speed transport protocol flow
eventually achieved a high throughput near to 1 [Gbps], the
throughput in the case of XP receiver increased more slowly
compared with the cases of Linux and FreeBSD receivers. In
addition, Standard TCP flows in the case of XP achieve higher
throughput than that in the cases of Linux and FreeBSD.

Receiver Side OS =FreeBSD ver.5.3, BUF=127

1000

800 | }

600

400

Standard
HSTCP -

Scalable -
FAST ---mne

Throughput[Mbps]

200 r

0 20 40 60 80
sec

100

Receiver Side OS = XP(SP2),BUF=127
1000

800 r
600 -

400
Standard
HSTCP -~
Scalable oo
FAST --meeme
CuBIC ——
HTCP oreeeeeee

0 20 40 60 80
sec

Throughput[Mbps]

200

100

Fig. 4. Throughput characteristics observed with different receiver side OSs

C. Rapid change in network conditions

Route change is still and will be likely to happen in the
Internet due to the operational errors and the need for global
traffic engineering. Thus, we investigate how rapid changes of
network conditions (RTT and bottleneck bandwidth) affect the
throughput characteristics of each of the high-speed transport
protocols in switching the paths between two routers, the
emulator-path (very stable) and the JGNII domestic region
path (somewhat unstable) on the network as illustrated in
Fig. 1(c).

Delay Changed, BUF=127

Throughput[Mbps]

100

0 20 40 60 80
sec

120

Fig. 5. Path switching(RTT[msec]=38 — 80 — 38)

In Fig. 5, we observed the throughput behavior of a single
flow in case that the path was switched from the origina path
with 38 [msec] of RTT (JGNII domestic path) to the aternative
path (the emulator path) with 80 [msec] of RTT just after 30

bandwidth changed, BUF=127

1400 | " Standard TCP —— |

1200 -

1000

Throughput[Mbps]

140

Fig. 6. Path switching(Bandwidth[Mbps|=1000 — 250 — 1000)

seconds had passed since the start of the flow, and then, the
path was switched back to the original one after 60 seconds
had passed since the first switching. The socket buffer size was
set to the maximum bandwidth-delay product, i.e., the longer
RTT (80 [ms]) x the bandwidth (1 [Gbpg]).

At the moment of the change to the alternative path with a
longer RTT, the throughput of each of the TCP-based protocols
decreased near to half (which might be due to a few packet
losses) and gradually recovered its original high throughput,
while that of UDT seemed insensitive to this change. On
the other hand, at the moment of return to the origina path
with a shorter RTT, the throughput of each of UDT and the
TCP-based protocols decreased and then quickly recovered its
origina behavior.

In Figure 6, we also observed the throughput behavior in
case that the path was switched from the origina path with
1 [Gbps] of the bottleneck bandwidth to the alternative path
with 250 [Mbps] of that just after 30 seconds had passed
since the start of the flow, and then, the path was switched
back to the origina one after 60 seconds had passed since
the first switching. The socket buffer size was set to the
maximum bandwidth-delay product, i.e., the RTT (38 [mg])
x the maximum bottleneck bandwidth (1 [Gbps]).

At the moment of the change to the aternative path with
a smaller bottleneck bandwidth, the throughput of every pro-
tocols became considerably unstable, which was likely due
to a too large congestion window. On the other hand, at the
moment of return to the original path with a larger bottleneck
bandwidth, the throughput of every protocols recovered its
original behavior, where no packet loss seemed to happen.

D. coexisting flows which have different RTT values

In the configuration shown in Fig. 1(b), we started two
high-speed transport protocol flows (flowl and flow2) simul-
taneously, where the ratio of RTT of flow2 to that of flowl
was set to one, two, or four by using the network emulator.
Figure 7 shows the time-averaged throughput of these two
coexisting flows with different RTTs where RTT of flow 1 is
38 [ms] and that of flow 2 is 38, 76, or 152 [ms]. Note that
similar experiments were aready reported in the literature [11]

in which the bottleneck bandwidth was much lower than that
in our case.

It can be observed that the UDT is insensitive to RTT
and the TCP-based transport protocols suffer from severe
inefficiency as well as unfairness in throughput performance if
two flows have different RTTs. In fact, when the RTT of flow
2 is set to four times larger than that of flow 1, the achievable
throughput of flow 2 significantly decreases, while that of flow
1 increases just a little.

1000
900 |
800
700 |
600 § @ Flow2
s00
400

300
200 |
100

Throughput[Mbps]

1‘2‘4
ubT

1]2a]
HTCP

112/4]
CuBIC

1l2a]
Scalable

t]24]
Standard

Fig. 7. Throughput characteristics of flows with different RTTs

E. Coexistence of long-lived TCP flows

We first examined the scenario in which a long-lived Stan-
dard TCP and a high-speed transport protocol flow coexist. We
observed the well-known unfairness problem: that is, a high-
speed transport protocol flow starved the long-lived Standard
TCP flow for bandwidth, and the performance of the high-
speed transport protocol merely degraded.

We aso examined that throughput characteristics when
the two high-speed transport protocol flows coexist in the
path. We performed the simultaneous runs of two flows. All
the combinations of two protocols taken among the high-
speed transport protocols were examined, and their sum of
average throughput of two flows over 300 seconds is shown
in Fig. 8(a), where a flow by a protocol indicated in X-axis
and a flow indicated by an indicator coexist. We found that the
sum of the throughput of different kind of high-speed transport
protocol flows were smaller than those of coexisting identical
high-speed transport protocol flows, i.e., the link utilization
degrades when different kinds of high-speed transport protocol
flows coexist.

Figure 8(b) shows average throughput of each flow in case
of coexisting aHSTCP flow and an other high-speed transport
protocol flow. It is clearly observed that there are unfairness
in throughput. The unfairness problem were found in al cases
of coexisting different kind of high-speed transport protocol
flows. In particular, UDT protocol flow significantly affected
the performance of coexisting TCP-based protocol flows.

(a) Total throughput of coexisting two flows

1000

700 OHSTCP
600 W Scalable
ocuBIc
400 EHTCP
300 ouDT

Total Throughput[Mbps]
o
=
o

1000

Throughput[Mbps]
@
8

Fig. 8. Coexisting two kinds of high-speed transport protocol flows

F. Coexistence of short-lived TCP flows

We examined the throughput performance in case that short-
lived TCP flows and a high-speed transport protocol flow
coexist. In [2], we mainly focused on the performance of
short-lived TCP flows in similar scenarios and showed that
the degree of the degradation of performance of short-lived
TCP flows could be mitigated by setting socket buffer size
for a high-speed transport protocol flow to appropriate values.
In the following, we investigated not only the performances
of short-lived TCP flows, but also those of the high-speed
transport protocol flows.

We performed simultaneous runs of a single long-lived
flow using one of the high-speed transport protocols and
3000 short-lived flows using Standard TCP over the Japan-
US international line as illustrated in Fig. 1(d). The size of
each short-lived flow followed a Pareto distribution with the
mean of 100, 300 or 500 [KB], with the shape parameter set to
1.3. The starting time of each transfer was randomly selected
within the duration of 300 seconds.

Figure 9(a) shows the averaged throughput over 300[s] of
the high-speed transport protocol flow coexisting with short-
lived TCP flows, in case that the output buffer size of the
edge routers is 127. The leftmost side bars in each group on
the bar graph show the throughput when there was only a
single high-speed transport protocol flow on the path. It isclear
that the performance of the high-speed transport protocol flow
was considerably affected by the coexisting short-lived TCP
flows, even through the amount of these flows is small. The
larger the averaged file size of the short-lived TCP flow was,
the larger the observed damage in the high-speed transport
protocol flow became, except for UDT flow. The UDT flow
was also affected by coexisting short-lived TCP flow, but its

degree of degradation was relatively small.

Figure 9(b) shows the averaged throughput of the short-
lived TCP flows defined by (3> S;)/(>t;), where S; denotes
the file size of flow 7 and ¢; denotes the transfer time of
flow 4, respectively. The larger the averaged file size became,
the higher the averaged throughput of short-lived TCP flows
achieved. However, in case of averaged file size of 500[KB],
the averaged throughput of short-lived TCP flows coexisting
with a high-speed transport protocol flow was smaller com-
pared when the short-lived TCP flows run without coexisting
a high-speed transport protocol flow. Figure 10 plots the time-
series of throughput of high-speed transport protocol flows in
case that the short-lived TCP flows with an average file size
of 500[KB] were randomly generated during 50[s] and 350[s]
periods.

(a) Throughput of high-speed transport protocol (BUF=127)

1000
900
800 =

600
500

700

O no short-lived
W 100KB
[J300KB
[500KB

Throughput[Mbps]

el

(b) Throughput of short lived TCP flow (BUF=127)

H 100KB
J 300KB
I 500KB

Throughput[Mbps]

OO0
ORI BRDON

Fig. 9. Throughput of high-speed flows and short-lived TCP flows

Figure 11 shows the average throughput of a high-speed
transport protocol flow (shown in (a)) and short-lived TCP
flows (shown in (b)) when the buffer size at the edge routers
is 127 or 512 in case that averaged file size of short-lived TCP
flows is 500[KB]. It is observed that by setting the buffer
size large at the edge routers, the achievable throughput of
coexisting flows were improved to some extent.

These results indicated that coexisting short-lived standard
TCP flows could considerably damage the performance of
high-speed TCP-based transport protocol flows although co-

1400 + Standard TCP ——

HSTC
Scalable TCP =w=weeee
HTCI

1200 |
1000 |
800 | |3}

600 1 if

Throughput[Mbps]

400

200

0 50 100 150 200 250 300 350 400

Fig. 10. Throughput characteristics of high-speed transport protocol flows
coexisting with short-lived TCP flows during 50-350[s]

existing long-lived standard TCP flows could not so. This
may be because the dow-start phases of short-lived TCP flows
randomly change the available bandwidth. The performance of
short-lived standard TCP flows with relatively large file size
was also adversely affected by the coexisting high-speed trans-
port protocol flows. Setting the buffer size at the bottleneck
nodes larger could mitigate the degradation of throughput of
both high-speed TCP and short-lived TCP flows.

G. Coexistence of CBR UDP flows

We performed simultaneous runs of a single long-lived flow
by one of the high-speed transport protocols and two CBR
(constant bit rate) streams by the UDP protocol on the path
shown in Fig. 1. Each stream consisted of 200 [byte] UDP
packets sent at the rate of 1.6, 3.2 and 8 [Mbps] (representing
64 [Kbps] x n flows, corresponding to the cases where n = 25,
50 and 125). In this subsection, we present the results of two
scenarios as follows: (1) two UDP flows start first, followed
by a single high-speed transport protocol flow starting at 30 [s]
(case 1); and (2) a single high-speed transport protocol starts
first, and two UDP flows are injected at 30 [s] (case 2).

Figure 12 illustrates the packet loss rate observed in
8[Mbps] UDP flows when they coexist with a high-speed
transport protocol flow in case 2. When there were only UDP
flows in the path or they coexist with a Standard TCP flow, no
packet loss occurred. However, the UDP flows coexisting with
a high-speed transport protocol flow seen few packet |osses.

Figure 13(a) shows the jitter characteristics of two 8[Mbps]
UDP flows observed in case 1 when the buffer size at the
edge routers is 127 or 512. Comparing the averaged jitter of
two CBR flows with a coexisting high-speed transport protocol
flow and without that (indicated by “only UDP flows"), it is
obvious that the jitter of the CBR flows is affected by the
coexisting high-speed flow.

Figure 13(b) shows the average throughput over 300 [s] of
high-speed transport protocol flows when the buffer size at the
edge routers is 127 or 512. The each grouped bar graph, the
bar labeled “no UDP” shows the throughput characteristics of
each high-speed transport protocol flow without any coexisting
UDP flow. Throughput of high-speed transport protocol flows

(a) Throughput of high-speed transport protocol

1000
o
Q
el
= O BUF=127, no-short-lived
= W BUF=127,short-lived
2 O BUF=512,n0-short-lived
E} B BUF=512,short-lived
o
=
[=
(b) Throughput of short lived TCP flow

2
= 19
2 1.8
= 1.7
= }g 0 BUF=127
O W BUF=512
3 1.3
£ 12
- 1.1

1

> &
&S & FES
& %&’b(\ P O 3
o
A/}\
S

Fig. 11. Effect of buffer size at edge routers

were more or less affected by coexisting UDP flows. However,
compared with TCP based high-speed transport protocols, the
degree of the degradation observed in the UDT flow is smaller.

Setting the buffer size at the edge routers larger, adverse
influence of UDP flow to the throughput of coexisting high-
speed transport protocol flow were mitigated.

Figure 14 depicts the performance characteristics observed
in case 2. The similar tendencies were observed in the jitter
of UDP flows and in the throughput characteristics of the
high-speed transport protocol flow, as in case 1, except for
the throughput of Standard TCP flow. Since Standard TCP
flow does not increase its window size aggressively during
its congestion avoidance phase, it might not be affected by
coexisting UDP flows in case 2. On the other hand, in case 1
where the UDP started first, the Standard TCP flow competed
the bandwidth with UDP flows during its slow start phase.

Figure 15 shows throughput characteristics of a single
flow by each of two high-speed transport protocols (HSTCP
and CUBIC) in cases of no UDP flows coexisting, of UDP
flows starting beforehand (case 1), and of UDP flows starting
afterward (case 2), respectively, in case that the buffer size at
the edge routers is 127. For both TCP protocols, in case 1, the
throughput of the TCP flow could not increase rapidly at the
dow start phase, which may be due to the packet losses caused
by the coexisting UDP flows. In case 2, athough the UDP

0.016
= 0.014
20012 |
c 001 f
% 0.008 =
— 0.006
£ 0004
50002 F

OBUF127
EBUF512

Fig. 12. Packet loss rate observed on UDP flows

(a) jitter of UDP flow (8[Mbps]x2)

0.06
_ 005
w
£ gg: | OBUF=127
s W BUF=512
=

(b) Throughput of high-speed transport protocol flow

1000

O BUF=127, with UDP
EBUF=127, no UDP
OBUF=512, with UDP
E BUF=512, no UDP

Throughput[Mbps]

Fig. 13. Jitter of UDP flow and throughput of high-speed transport protocol
flow in case 1

flows were injected after the TCP flow entered the congestion
avoidance phase, occasional packet losses occurred when the
flow throughput increased near to the maximum bandwidth.
This prevented the TCP flow from achieving a good average
throughput. We observed similar tendencies in case that the
buffer size at the edge routers is 512.

These results demonstrated that the throughput of high-
speed transport protocols were adversely affected by coex-
isting UDP flows even if the load of the UDP flows was
only 16[Mbps]. We also observed the UDP flows with a
lower load(3.2 or 6.4[Mbps]) could affect the performance
of coexisting high-speed transport protocols in case of 127
buffer size. Setting the buffer size of the edge routers larger

(a) jitter of UDP flow (8[Mbps]x2)

OBUF=127
M BUF=512

jitter[ms]

(b) Throughput of High-Speed Transport Protocol Flow

1000
900
800
700
600
500
400
300
200
100

O BUF=127, with UDP
B BUF=127, no UDP
O BUF=512, with UDP
E BUF=512, no UDP

Throughput[Mbps]

Fig. 14. Jitter of UDP flow and throughput of high-speed transport protocol
flow in case 2

(a) HSTCP
1000 ‘ ‘ ‘

T

%2}
Q
Qo
=
1000

o
Q
Qo
=
5
Q
=
[=2]
3
e
=
=

200 ,w‘»"*N single flow ——

fe casel -

100 Case2 =

0 . ‘ ‘

0 50 100 150

Fig. 15. Throughput characteristics of high-speed transport protocol coex-
isting UDP flows

could mitigate such throughput degradations of TCP-based
high-speed transport protocols, while making the jitter of UDP
flows larger in most cases.

IV. CONCLUDING REMARKS

We are investigating what happens if high-speed transport
protocols are used in the global Internet, through experiments
on the JGN 11, an open 10Gbps-class network testbed in Japan.
Our results (in cases with 1 [Gbps] end-hosts) indicated that,
when long-lived data transfer flows of high-speed transport
protocols run in coexistence with Internet application traffic
such as short-term web browsing flows or long-term video
streaming flows, not only the performance of web access
or video streaming is degraded, but also that of the high-
speed transfer flows is considerably degraded even if the
amount of this application traffic is low. In other words, such
circumstances are neither effective nor efficient in terms of
bandwidth sharing.

Our ultimate godl is to identify a feasible and cost-effective
goal itself we should pursue for the future Internet where the
demanding high throughput data transfer must coexist with
various other application traffic over shared heterogeneous net-
works, and to finally propose ways to realize such a desirable
coexistence by an improved high-speed data transport protocol
and/or by a new management mechanism in the intermediate
nodes.

We thank the NCDM team of UIC and Dr. Injong Rhee
and Dr. Lisong Xu for their helpful comments and techni-
cal advices. We are also grateful to the APAN/JGN2 NOC
members for their assistance in conducting the experiments.
This work was supported in part by the Japan Society for the
Promotion of Science, Grant-in-Aid for Scientific Research
(A) (15200005).

REFERENCES

[1] R.L. Caottrell, S. Ansari, P. Khandpur, R. Gupta,R.Hughes-Jones,M.Chen,
L.Mclnttosh, F.Leers, “ Characterization and Evaluation on TCP and UDP-
based Transport on Real Networks,” PFLDnet2005, Feb. 2005.

[2] K Kumazoe, K. Kouyama, Y. Hori, M. Tsuru, Y. Qie, “Transport Protocols
for Fast Long-Distance Networks:Evaluation of Their Penetration and
Robustness on JGNII,* PFLDnet2005, Feb. 2005.

[3] S. Foyd, “HighSpeed TCP for Large Congestion Windows,” RFC 3649,
Experimental, December 2003.

[4] T.Kelly,“Scaable TCP: Improving Performance in Highspeed Wide Area
Networks,” Computer Communication Review 32(2), April 2003

[5] http://netlab.caltech.edu/FAST

[6] http:/Aww.csc.ncsu.edu/facul ty/rheel/export/bitcp/

[7] Hamilton Institute Net Lab, http://www.hamilton/ie/net/

[8] UDT, http://udt.sourceforge.net

[9] JGNII, http://www.jgn.nict.go.jp/e/index.html

[10] TCP Tuning Guide, http://www-didc.Ibl.gov/TCP-tuning/

[11] “Experimental Evaluation of TCP Protocols for High-Speed Networks”,
Yee-Ting Li, D. Leith, R. N. Shorten, 2005,
http://www.hamilton.mav.ie/net/eval /resul ts. H12005.pdf

