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Abstract—it has been recognized that TCP throughput 

deteriorates in networks with large bandwidth-delay-product and 
non-negligible packet losses. A number of protocols, such as High 
Speed TCP, Scalable TCP and TCP-Westwood have been 
proposed to address this problem. However, their lack of 
friendliness to existing protocols has hampered their wide 
deployment in public networks. In this paper, we propose 
TCP-AReno (Adaptive Reno) to ensure friendliness to TCP-Reno, 
as well as efficiency in high-speed networks. A key feature of 
TCP-AReno is that it dynamically adjusts the TCP response 
function based on congestion estimation via RTT measurement. It 
increases congestion window faster and decreases the window less 
significantly than TCP-Reno when it recognizes no congestion. As 
the congestion level increases, it tunes the response function so 
that it behaves like TCP-Reno. Simulation and experimental 
results show that TCP-AReno maintains friendliness to 
TCP-Reno in networks with varying configurations, while it 
achieves much higher throughput than TCP-Reno. 

I. INTRODUCTION 
ince TCP has been designed for networks where a packet 
loss is recognized as a congestion signal, it is well known 

that TCP suffers from degradation in fast and long-distance 
networks with non-negligible random losses. To improve 
performance of TCP in such networks, a number of new TCP 
variants, including High Speed TCP (HS-TCP) [1], Scalable 
TCP [2], and TCP-Westwood (TCP-W) [3,4,6], have been 
proposed. These protocols follow an AIMD (Additive Increase 
and Multiple Decrease) behavior of TCP-Reno but have more 
aggressive response functions. For example, when a High 
Speed TCP flow finds a packet loss, it decreases its congestion 
window less significantly than TCP-Reno, and otherwise it 
increases the congestion window faster than TCP-Reno, and 
thus, it could severely damage coexisting TCP-Reno flows. 
Their potential unfriendliness to TCP-Reno could be one of the 
reasons that have hampered their wide deployment in public 
networks. 

In this paper, we present TCP-AReno (Adaptive Reno) [5] 
and some simulation and experimental performance 
evaluations. TCP-AReno adaptively tunes TCP-Reno’s 
response function in such a way that it improves efficiency in 
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high-speed networks as well as friendliness to TCP-Reno. 
TCP-AReno is based on TCP-Westwood-BBE (Buffer and 
Bandwidth Estimation) [4], which is proposed to enhance 
friendliness of TCP-Westwood even in networks with varying 
buffer capacities, flows with varying RTTs, with/without 
AQMs. It estimates congestion level via RTT to determine 
whether a packet loss is due to congestion or not. Basically, any 
multi-bit congestion indicators can be used for this purpose if 
they detect congestion only when coexisting TCP-Reno flows 
detect congestion, i.e. only when a packet loss is likely to 
happen. We employed RTT here because it is proven to be a 
good congestion estimator [7] and does not require any network 
supports. If a loss is not recognized as a congestion event, the 
congestion window is reduced according to TCPW’s eligible 
bandwidth estimation. Otherwise, the loss is associated to 
congestion and it adjusts the window reduction so that the 
reduction matches TCP-Reno’s behavior, i.e., halving the 
congestion window. Our Internet measurements have shown 
that this loss discrimination helps to improve throughputs 
without losing friendliness to TCP-Reno [9]. 

TCP-AReno introduces a fast window expansion mechanism 
to quickly increase congestion window whenever it finds 
network underutilization. It dynamically adjusts the TCP 
response function based on the congestion measurement 
introduced by TCPW-BBE, whereas HS-TCP adjusts the 
function based on congestion window size. TCP-AReno 
increases the congestion window much faster than TCP-Reno 
when it detects no congestion, i.e. when RTT is close to its 
minimum value, and thus achieves higher efficiency than 
TCP-Reno. When a TCP-AReno flow competes with 
TCP-Reno flows, it detects increased RTT and thus increased 
congestion level. In this case, it recognizes that packet losses 
are likely to happen and adopts a response function that 
matches TCP-Reno’s behavior, i.e. increasing the congestion 
window by 1MSS/RTT. 

In this paper, we describe TCP-AReno in section 2. Then, 
simulation and experimental evaluations are given in Section 3 
and 4, respectively, followed by conclusion in Section 5. 

II. TCP-ADAPTIVE RENO (TCP-ARENO) 

A. Congestion Measurement 
A key feature of TCP-AReno is that it dynamically adjusts 
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the TCP response function based on congestion level 
estimation introduced by TCPW-BBE. 

TCP-AReno determines the range of RTT between RTTmin 
and RTTcong, the value that RTT is expected to take when a 
packet is lost due to congestion. Given that packet losses are 
mainly due to congestion, RTTcong is estimated using RTT 

values measured right before the losses. Namely, RTTcong is 
updated upon each packet loss event as follows; 
where index j expresses j-th packet loss event and a is an 
exponential smoothing factor. When current RTT is close to 
RTTmin, a TCP-AReno sender recognizes that the network is 
underutilized, and when the RTT is close to RTTcong, it 

recognizes the network is being congested. Thus, congestion 
level c (0≤c≤1) is defined as follows: 

B. Congestion Window Increase 
In TCP-AReno, congestion window W is managed in two 

parts; a base part, Wbase, and a fast probing part, Wprobe, as 
shown Fig. 1. The base part maintains a congestion window 
size equivalent to TCP-Reno and the probing part is introduced 
to quickly fill the bottleneck link. The base part is always 
increased like TCP-Reno, i.e. 1MSS/RTT, while the increase of 
the probing part, Winc, is dynamically adjusted as illustrated in 
Fig. 2. 

Wbase = Wbase + 1MSS / W, 
 Wprobe = max( Wprobe + Winc / W, 0 ) 

(1) When the network is recognized as underutilized, 
TCP-AReno sets Winc close to its maximum value Winc

max. To 
scale up to high-speed networks, Winc

max should be adequately 
sized according to the bottleneck link capacity, pipe size, 
congestion window size, and so on. While we are now studying 
how to size Winc

max through our experiments, we found that 
linearly scaling Winc

max according to the estimated bottleneck 
link capacity B better works in most of the cases; thus, 

Winc
max = B / M * MSS. 

where M is a scaling factor we set at 10Mbps based on our 
Internet measurements so far. B is estimated through time 
sequence of ACKed sequence numbers like TCPW. 

(2) As the congestion level c increases, TCP-AReno quickly 
decreases Winc, even less than 0, so that congestion window of 
coexisting TCP-Reno flow catches up to that of TCP-AReno 
flow. 

(3) When c approaches 1 and a packet loss is likely to happen, 
Winc is gradually increased again so that it approaches to 0. In 
this situation, the base part takes a main role and TCP-AReno 
behaves like TCP-Reno. 

To realize above described U-curve for Winc, we calculate it 
as a combination of an exponential function for (2) and a linier 
function for (3). Therefore, Winc is given by the following 
function of c; 

Winc(c) =Winc
max/eαc + βc + γ 

where α determines the range when the network is recognized 
as underutilized. While α should be small enough to allow 
errors in RTT measurement, experiments using our Linux 
implementation show that α=10 is adequate. For better 
friendliness to TCP-Reno, Wprobe should have converged to 0 
when a packet loss is like to happen. Thus, we obtain 
parameters β and γ as follows: 

β = 2Winc
max(1/α - (1/α+1)/eα) 

γ = 1 - 2Winc
max(1/α - (1/α+1/2)/eα). 

C. Congestion Window Reduction 
TCP-AReno adjusts congestion window reduction based on 

the congestion measurement. Like TCPW-BBE, the congestion 
window is halved when the network is congested and a packet 
loss is likely to happen, while the reduction is mitigated when 
the network is underutilized, as shown in Fig. 3. Thus, the 
congestion window is reduced as follows:  

Wbase = W*Wdec = W / (1+c),     Wprobe = 0. 
This figure also illustrates the congestion window reduction 

of TCP-Reno and original TCPW (TCPW+[6]). As it is 
indicated, TCPW halves the congestion window when RTT is 
twice RTTmin and thus the buffer size at the bottleneck router is 
equal to the pipe size. That is why friendliness of TCPW 
deteriorates when buffer size or RTT varies, and friendliness of 
TCP-BBE and TCP-AReno maintains against these variations. 

III. SIMULATION RESULTS 

A. Evaluation Setups 
In this section, we show some of our simulation results using 
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ns2 simulator [8]. We first consider a simple dumb-bell 
topology (1), shown in Fig. 4, where a High Speed TCP 
(HS-TCP) or TCP-AReno flow competes with a TCP-Reno 
flow. We also consider a more complex topology (2), shown in 
Fig. 5, where multiple bottleneck links are cascaded. 
Bandwidth and propagation delay of the links are illustrated in 
these figures. In Fig. 4, router buffer capacity is set equal to the 
bandwidth delay product and the buffer employs drop-tail 
discarding. In Fig. 5, the buffer employs RED (Random Early 
Detection), and the minimum and maximum thresholds are set 
at 10% and 30% of the bandwidth delay product for the longest 
flow. 

B. Friendliness in high-speed environment 
Figure 6 shows throughputs of two competing TCP flow in 

topology (1); one uses TCP-Reno and the other uses either 
HS-TCP, TCP-AReno, or TCP-Reno. Bottleneck link capacity 
ranges from 10Mbps to 1Gbps and random packet loss rate at 
the bottleneck link is set at 10-6. This figure shows that a 
TCP-Reno flow can only utilize the bottleneck link bandwidth 
up to 150Mbps because of the random packet loss. When a 
HS-TCP flow and a TCP-Reno flow competes at the bottleneck 
link, although the HS-TCP flow can almost fully utilizes the 
link capacity up to 1Gbps, at the same time, it severely 
deteriorates TCP-Reno throughput. For example, when the link 
capacity is 200Mbps, the TCP-Reno flow can use only 10% of 
its eligible bandwidth. On the other hand, TCP-AReno can 
fairly share the bottleneck link bandwidth with TCP-Reno. 
These two flows equally share the bandwidth when the link 
capacity is less than 300Mbps. With larger link capacity, a 
TCP-Reno flow can utilize only 150Mbps of the bandwidth due 
to random packet losses but the TCP-AReno flow can use up 
rest of the bandwidth. 

C. Friendliness in lossy environment 
Figure 7 shows throughputs of two competing TCP flows 

with varying random packet loss rates on a 100Mbps bottleneck 
link. If the loss rate is smaller, two TCP-Reno flow can use up 
the link capacity and fairly share the bandwidth, but they 

underutilize the bottleneck link as the loss rate increases. 
When one of the TCP-Reno flow is replaced by a HS-TCP 

flow, which improves bandwidth utilization when the loss rate 
is less than 0.01%, the HS-TCP flow severely deteriorates 
throughput of the TCP-Reno flow. When a TCP-Reno flow and 
a TCP-AReno flow coexist, TCP-AReno flow can fairly share 
the bottleneck link. This figure also indicates that TCP-AReno 
is more robust to random packet losses than HS-TCP, for 
example, TCP-AReno can obtain 7 times larger throughput 
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without affecting TCP-Reno throughput when the loss rate is 
0.1%. 

D. Fairness among individual flows 
Throughputs of TCP-AReno flows with different RTTs and 

different hop counts are evaluated using network topology (2). 
Reverse flows traversing the routers in the reverse direction are 
included to take into account the important effects of such 
reverse traffic. 

In Fig. 8, individual throughputs of coexisting 4 TCP-Reno 
flows and 4 TCP-AReno flows are shown. On the forward path, 
the bottleneck link bandwidth is almost fully utilized by 6 
forward flows, and a TCP-AReno and a TCP-Reno flow on the 
same path obtain almost the same bandwidth. On the reverse 
path, however, although TCP-AReno flow obtains almost the 
same bandwidth as TCP-Reno flow, the link utilization is only 
around 40%. As is the same with TCP-Vegas or FAST, since 
they use RTT as a congestion indicator, TCP-AReno also can 
not efficiently utilize the residual capacity when its reverse path 
is congested. However, it should be emphasized that 
TCP-AReno is still at least as efficient as TCP-Reno, while 
TCP-Vegas and FAST could be less eficient than TCP-Reno in 
this situation. 

IV. EXPERIMENTAL RESULTS 

A. Evaluation Setups 
Some of the experimental results are shown in this section. In 

our laboratory and Internet experiments, we implemented 
TCP-AReno on a “layer-2” TCP proxy that relays TCP flows 
from TCP-Reno to TCP-AReno, as shown in Fig. 9. The proxy 
is placed as a gateway for long-distance link, so that 
long-distance TCP throughputs are improved without 
modifying TCP hosts that have no idea whether their flows are 
going that far, or just within a local network. For a traffic 
source, we use Iperf [10] to generate continuous TCP data flow. 

B. Laboratory measurements 
Figure 10 and 11 show congestion window behaviors of a 

TCP-AReno flow and a TCP-Reno flow in the experimental 
laboratory network with 10-5 random packet losses and 

300Mbps bottleneck link capacity at the network emulator. In 
Fig. 10, congestion window of a lone TCP-AReno flow and a 
lone TCP-Reno flow are compared, while in Fig. 11, their 
congestion windows are plotted when they coexists. 

As shown in Fig. 10, packet losses occur even when 
congestion window is far less than the bandwidth delay product, 
and thus average throughput of a TCP-Reno flow is just 
18.3Mbps. On the other hand, average throughput of a 
TCP-AReno flow is as high as 232.1Mbps, 12.6 times 
improvement. It is confirmed that the TCP-AReno flow quickly 
increases its congestion window when the bottleneck link is not 
fully utilized. And when its congestion window grows large 
enough, its increase mitigated to avoid unnecessary congestion. 
The spikes in the congestion window size indicate a window 
inflation mechanism, which is a unique behavior of BSD-based 
TCP stack, meaning a packet loss occurring at this point. By 
observing the spikes in Fig. 10, one can notice that, if a packet 
loss occurs when the link is underutilized, TCP-AReno 
recognizes it as a non-congestion event and its congestion 
window reduction is minimized. Otherwise, the loss is 
recognized as a congestion event and the congestion window is 
halved, which is an important behavior for friendliness to 
TCP-Reno.  

When a TCP-Reno flow and a TCP-AReno flow coexist, as 
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shown in Fig.7, the TCP-AReno flow also achives high 
throughput againt random packet losses without disturbing 
coexisting TCP-Reno flow. Average throughputs of the 
TCP-AReno and TCP-Reno flows are 227.4Mbps and 
18.5Mbps, respectively, which are almost the same as they 
solely exist. 

In Fig. 12, throughput of a lone flow is shown for different 
bottleneck capacities at the network emulator. In this case, RTT 
is set at 20msec. This figure shows the effectiveness of 
TCP-AReno in high-speed and lossy environment. Especially 
with high random packet loss rate of 10-4, TCP-AReno flow 
obtains ten times more throughput than TCP-Reno. 

C. Internet measurements 
We had a series of Internet measurements in an environment 

shown in Fig. 9, where the bottleneck is a 100Mbps link to 
FTTH Internet access. No additional packet losses are 
introduced at the network emulator. 

In Fig. 13, relative throughput of a relayed TCP-AReno flow 
and an end-to-end direct TCP-Reno flow is plotted. When no 
additional delay is added at the network emulator, both 
TCP-AReno and TCP-Reno achieve similar throughput. When 
25msec round trip delay is added, packet losses at the Internet 
path can cause larger effects on the throughput. Since 
TCP-AReno is much robust against ransom packet losses, 

TCP-AReno flow has 2.4 times larger throughput than 
TCP-Reno flow. 

V. CONCLUSION 
In this paper, we presented TCP Adaptive Reno, or 

TCP-AReno, which provides an efficient and 
TCP-Reno-friendly congestion control. By incorporating a 
congestion estimation scheme through RTT measurement, 
TCP-AReno dynamically adjusts the TCP response function 
appropriately. 

 Our simulation and experimental results show that 
TCP-AReno is friendly to coexisting TCP-Reno flows over a 
wide range of link capacities and random packet loss rates, 
while achieving higher efficiency than TCP-Reno or even 
High-Speed TCP. We also note that the computational cost of 
TCP-AReno is comparable to that of HS-TCP. 

As a future work, we are planning more extensive Internet 
measurements over long-distance high-speed lines and will 
tune the response functions. Fairness among flows having 
variety of RTTs, as well as the effects of reverse traffic, would 
be one of the important issues. 
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