
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1

Abstract—it has been recognized that TCP throughput

deteriorates in networks with large bandwidth-delay-product and
non-negligible packet losses. A number of protocols, such as High
Speed TCP, Scalable TCP and TCP-Westwood have been
proposed to address this problem. However, their lack of
friendliness to existing protocols has hampered their wide
deployment in public networks. In this paper, we propose
TCP-AReno (Adaptive Reno) to ensure friendliness to TCP-Reno,
as well as efficiency in high-speed networks. A key feature of
TCP-AReno is that it dynamically adjusts the TCP response
function based on congestion estimation via RTT measurement. It
increases congestion window faster and decreases the window less
significantly than TCP-Reno when it recognizes no congestion. As
the congestion level increases, it tunes the response function so
that it behaves like TCP-Reno. Simulation and experimental
results show that TCP-AReno maintains friendliness to
TCP-Reno in networks with varying configurations, while it
achieves much higher throughput than TCP-Reno.

I. INTRODUCTION
ince TCP has been designed for networks where a packet
loss is recognized as a congestion signal, it is well known

that TCP suffers from degradation in fast and long-distance
networks with non-negligible random losses. To improve
performance of TCP in such networks, a number of new TCP
variants, including High Speed TCP (HS-TCP) [1], Scalable
TCP [2], and TCP-Westwood (TCP-W) [3,4,6], have been
proposed. These protocols follow an AIMD (Additive Increase
and Multiple Decrease) behavior of TCP-Reno but have more
aggressive response functions. For example, when a High
Speed TCP flow finds a packet loss, it decreases its congestion
window less significantly than TCP-Reno, and otherwise it
increases the congestion window faster than TCP-Reno, and
thus, it could severely damage coexisting TCP-Reno flows.
Their potential unfriendliness to TCP-Reno could be one of the
reasons that have hampered their wide deployment in public
networks.

In this paper, we present TCP-AReno (Adaptive Reno) [5]
and some simulation and experimental performance
evaluations. TCP-AReno adaptively tunes TCP-Reno’s
response function in such a way that it improves efficiency in

The authors are with System Platforms Laboratory, NEC Corporation, 1753

Shimonumabe, Nakahara-ku, Kawasaki-shi, 211-8555 (corresponding author to
provide e-mail: h-shimonishi@cd.jp.nec.com).

high-speed networks as well as friendliness to TCP-Reno.
TCP-AReno is based on TCP-Westwood-BBE (Buffer and
Bandwidth Estimation) [4], which is proposed to enhance
friendliness of TCP-Westwood even in networks with varying
buffer capacities, flows with varying RTTs, with/without
AQMs. It estimates congestion level via RTT to determine
whether a packet loss is due to congestion or not. Basically, any
multi-bit congestion indicators can be used for this purpose if
they detect congestion only when coexisting TCP-Reno flows
detect congestion, i.e. only when a packet loss is likely to
happen. We employed RTT here because it is proven to be a
good congestion estimator [7] and does not require any network
supports. If a loss is not recognized as a congestion event, the
congestion window is reduced according to TCPW’s eligible
bandwidth estimation. Otherwise, the loss is associated to
congestion and it adjusts the window reduction so that the
reduction matches TCP-Reno’s behavior, i.e., halving the
congestion window. Our Internet measurements have shown
that this loss discrimination helps to improve throughputs
without losing friendliness to TCP-Reno [9].

TCP-AReno introduces a fast window expansion mechanism
to quickly increase congestion window whenever it finds
network underutilization. It dynamically adjusts the TCP
response function based on the congestion measurement
introduced by TCPW-BBE, whereas HS-TCP adjusts the
function based on congestion window size. TCP-AReno
increases the congestion window much faster than TCP-Reno
when it detects no congestion, i.e. when RTT is close to its
minimum value, and thus achieves higher efficiency than
TCP-Reno. When a TCP-AReno flow competes with
TCP-Reno flows, it detects increased RTT and thus increased
congestion level. In this case, it recognizes that packet losses
are likely to happen and adopts a response function that
matches TCP-Reno’s behavior, i.e. increasing the congestion
window by 1MSS/RTT.

In this paper, we describe TCP-AReno in section 2. Then,
simulation and experimental evaluations are given in Section 3
and 4, respectively, followed by conclusion in Section 5.

II. TCP-ADAPTIVE RENO (TCP-ARENO)

A. Congestion Measurement
A key feature of TCP-AReno is that it dynamically adjusts

TCP-Adaptive Reno for
Improving Efficiency-Friendliness Tradeoffs of

TCP Congestion Control Algorithm
Hideyuki Shimonishi, Takayuki Hama, and Tutomu Murase

S

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

the TCP response function based on congestion level
estimation introduced by TCPW-BBE.

TCP-AReno determines the range of RTT between RTTmin
and RTTcong, the value that RTT is expected to take when a
packet is lost due to congestion. Given that packet losses are
mainly due to congestion, RTTcong is estimated using RTT

values measured right before the losses. Namely, RTTcong is
updated upon each packet loss event as follows;
where index j expresses j-th packet loss event and a is an
exponential smoothing factor. When current RTT is close to
RTTmin, a TCP-AReno sender recognizes that the network is
underutilized, and when the RTT is close to RTTcong, it

recognizes the network is being congested. Thus, congestion
level c (0≤c≤1) is defined as follows:

B. Congestion Window Increase
In TCP-AReno, congestion window W is managed in two

parts; a base part, Wbase, and a fast probing part, Wprobe, as
shown Fig. 1. The base part maintains a congestion window
size equivalent to TCP-Reno and the probing part is introduced
to quickly fill the bottleneck link. The base part is always
increased like TCP-Reno, i.e. 1MSS/RTT, while the increase of
the probing part, Winc, is dynamically adjusted as illustrated in
Fig. 2.

Wbase = Wbase + 1MSS / W,
 Wprobe = max(Wprobe + Winc / W, 0)

(1) When the network is recognized as underutilized,
TCP-AReno sets Winc close to its maximum value Winc

max. To
scale up to high-speed networks, Winc

max should be adequately
sized according to the bottleneck link capacity, pipe size,
congestion window size, and so on. While we are now studying
how to size Winc

max through our experiments, we found that
linearly scaling Winc

max according to the estimated bottleneck
link capacity B better works in most of the cases; thus,

Winc
max = B / M * MSS.

where M is a scaling factor we set at 10Mbps based on our
Internet measurements so far. B is estimated through time
sequence of ACKed sequence numbers like TCPW.

(2) As the congestion level c increases, TCP-AReno quickly
decreases Winc, even less than 0, so that congestion window of
coexisting TCP-Reno flow catches up to that of TCP-AReno
flow.

(3) When c approaches 1 and a packet loss is likely to happen,
Winc is gradually increased again so that it approaches to 0. In
this situation, the base part takes a main role and TCP-AReno
behaves like TCP-Reno.

To realize above described U-curve for Winc, we calculate it
as a combination of an exponential function for (2) and a linier
function for (3). Therefore, Winc is given by the following
function of c;

Winc(c) =Winc
max/eαc + βc + γ

where α determines the range when the network is recognized
as underutilized. While α should be small enough to allow
errors in RTT measurement, experiments using our Linux
implementation show that α=10 is adequate. For better
friendliness to TCP-Reno, Wprobe should have converged to 0
when a packet loss is like to happen. Thus, we obtain
parameters β and γ as follows:

β = 2Winc
max(1/α - (1/α+1)/eα)

γ = 1 - 2Winc
max(1/α - (1/α+1/2)/eα).

C. Congestion Window Reduction
TCP-AReno adjusts congestion window reduction based on

the congestion measurement. Like TCPW-BBE, the congestion
window is halved when the network is congested and a packet
loss is likely to happen, while the reduction is mitigated when
the network is underutilized, as shown in Fig. 3. Thus, the
congestion window is reduced as follows:

Wbase = W*Wdec = W / (1+c), Wprobe = 0.
This figure also illustrates the congestion window reduction

of TCP-Reno and original TCPW (TCPW+[6]). As it is
indicated, TCPW halves the congestion window when RTT is
twice RTTmin and thus the buffer size at the bottleneck router is
equal to the pipe size. That is why friendliness of TCPW
deteriorates when buffer size or RTT varies, and friendliness of
TCP-BBE and TCP-AReno maintains against these variations.

III. SIMULATION RESULTS

A. Evaluation Setups
In this section, we show some of our simulation results using

Winc
max

Winc

0 RTT

RTTmin
RTTcong

Fig. 2: Congestion window increase per RTT (Wprobe part)

jj
cong

j
cong aRTTRTTaRTT +−= −1)1(

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
−

= 1,min
min

min

RTTRTT
RTTRTT

c
cong

0 Time

Congestion
window

Wprobe

Wbase

TCP-Reno

TCP-AReno

Fig. 1: Congestion window increase of TCP-AReno during

congestion avoidance Wdec

0

1

RTT
RTTmin 2xRTTmin

0.5

RTTcong

TCP-AReno / TCPW-BBE

TCP-Westwood

TCP-Reno

Fig. 3: Congestion window decrease at a packet loss

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

ns2 simulator [8]. We first consider a simple dumb-bell
topology (1), shown in Fig. 4, where a High Speed TCP
(HS-TCP) or TCP-AReno flow competes with a TCP-Reno
flow. We also consider a more complex topology (2), shown in
Fig. 5, where multiple bottleneck links are cascaded.
Bandwidth and propagation delay of the links are illustrated in
these figures. In Fig. 4, router buffer capacity is set equal to the
bandwidth delay product and the buffer employs drop-tail
discarding. In Fig. 5, the buffer employs RED (Random Early
Detection), and the minimum and maximum thresholds are set
at 10% and 30% of the bandwidth delay product for the longest
flow.

B. Friendliness in high-speed environment
Figure 6 shows throughputs of two competing TCP flow in

topology (1); one uses TCP-Reno and the other uses either
HS-TCP, TCP-AReno, or TCP-Reno. Bottleneck link capacity
ranges from 10Mbps to 1Gbps and random packet loss rate at
the bottleneck link is set at 10-6. This figure shows that a
TCP-Reno flow can only utilize the bottleneck link bandwidth
up to 150Mbps because of the random packet loss. When a
HS-TCP flow and a TCP-Reno flow competes at the bottleneck
link, although the HS-TCP flow can almost fully utilizes the
link capacity up to 1Gbps, at the same time, it severely
deteriorates TCP-Reno throughput. For example, when the link
capacity is 200Mbps, the TCP-Reno flow can use only 10% of
its eligible bandwidth. On the other hand, TCP-AReno can
fairly share the bottleneck link bandwidth with TCP-Reno.
These two flows equally share the bandwidth when the link
capacity is less than 300Mbps. With larger link capacity, a
TCP-Reno flow can utilize only 150Mbps of the bandwidth due
to random packet losses but the TCP-AReno flow can use up
rest of the bandwidth.

C. Friendliness in lossy environment
Figure 7 shows throughputs of two competing TCP flows

with varying random packet loss rates on a 100Mbps bottleneck
link. If the loss rate is smaller, two TCP-Reno flow can use up
the link capacity and fairly share the bandwidth, but they

underutilize the bottleneck link as the loss rate increases.
When one of the TCP-Reno flow is replaced by a HS-TCP

flow, which improves bandwidth utilization when the loss rate
is less than 0.01%, the HS-TCP flow severely deteriorates
throughput of the TCP-Reno flow. When a TCP-Reno flow and
a TCP-AReno flow coexist, TCP-AReno flow can fairly share
the bottleneck link. This figure also indicates that TCP-AReno
is more robust to random packet losses than HS-TCP, for
example, TCP-AReno can obtain 7 times larger throughput

0

10

20

30

40

50

60

70

80

90

100

1E-05 0.0001 0.001 0.01 0.1 1

Packet loss rate [%]

T
h
ro

u
gh

pu
t

[M
bp

s]

HS-TCP + TCP-Reno

TCP-AReno + TCP-Reno

TCP-Reno
+TCP-Reno

Fig. 7: Throughput of coexisting 2 flows
(Large packet loss case; capacity = 100Mbps)

0

100

200

300

400

500

600

700

800

900

1000

0 200 400 600 800 1000

Bottleneck link capacity [Mbps]

T
h
ro

u
gh

pu
t

[M
bp

s]

HS-TCP + TCP-Reno

TCP-AReno + TCP-Reno

TCP-Reno
+ TCP-Reno

Fig. 6: Throughput of coexisting 2 flows
(Large capacity case; loss rate = 10-6)

0

5

10

15

20

25

30

1⇒2 2⇒4 3⇒4 4⇒1

Flow

T
hr

ou
gh

pu
t
[M

bp
s]

TCP-AReno TCP-Reno

Fig. 8: Throughput of coexisting 8 flows (Topology 2)

TCP Senders Receivers

10Mbps - 1Gbps

RTT=100msec

Fig. 4: Network topology (1)

100Mbps
30msec

100Mbps
20msec

100Mbps
10msec

1Gbps
1msec

1Gbps
1msec

1Gbps
1msec

1Gbps
1msec

1 2 3 4

Fig. 5: Network topology (2)

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

without affecting TCP-Reno throughput when the loss rate is
0.1%.

D. Fairness among individual flows
Throughputs of TCP-AReno flows with different RTTs and

different hop counts are evaluated using network topology (2).
Reverse flows traversing the routers in the reverse direction are
included to take into account the important effects of such
reverse traffic.

In Fig. 8, individual throughputs of coexisting 4 TCP-Reno
flows and 4 TCP-AReno flows are shown. On the forward path,
the bottleneck link bandwidth is almost fully utilized by 6
forward flows, and a TCP-AReno and a TCP-Reno flow on the
same path obtain almost the same bandwidth. On the reverse
path, however, although TCP-AReno flow obtains almost the
same bandwidth as TCP-Reno flow, the link utilization is only
around 40%. As is the same with TCP-Vegas or FAST, since
they use RTT as a congestion indicator, TCP-AReno also can
not efficiently utilize the residual capacity when its reverse path
is congested. However, it should be emphasized that
TCP-AReno is still at least as efficient as TCP-Reno, while
TCP-Vegas and FAST could be less eficient than TCP-Reno in
this situation.

IV. EXPERIMENTAL RESULTS

A. Evaluation Setups
Some of the experimental results are shown in this section. In

our laboratory and Internet experiments, we implemented
TCP-AReno on a “layer-2” TCP proxy that relays TCP flows
from TCP-Reno to TCP-AReno, as shown in Fig. 9. The proxy
is placed as a gateway for long-distance link, so that
long-distance TCP throughputs are improved without
modifying TCP hosts that have no idea whether their flows are
going that far, or just within a local network. For a traffic
source, we use Iperf [10] to generate continuous TCP data flow.

B. Laboratory measurements
Figure 10 and 11 show congestion window behaviors of a

TCP-AReno flow and a TCP-Reno flow in the experimental
laboratory network with 10-5 random packet losses and

300Mbps bottleneck link capacity at the network emulator. In
Fig. 10, congestion window of a lone TCP-AReno flow and a
lone TCP-Reno flow are compared, while in Fig. 11, their
congestion windows are plotted when they coexists.

As shown in Fig. 10, packet losses occur even when
congestion window is far less than the bandwidth delay product,
and thus average throughput of a TCP-Reno flow is just
18.3Mbps. On the other hand, average throughput of a
TCP-AReno flow is as high as 232.1Mbps, 12.6 times
improvement. It is confirmed that the TCP-AReno flow quickly
increases its congestion window when the bottleneck link is not
fully utilized. And when its congestion window grows large
enough, its increase mitigated to avoid unnecessary congestion.
The spikes in the congestion window size indicate a window
inflation mechanism, which is a unique behavior of BSD-based
TCP stack, meaning a packet loss occurring at this point. By
observing the spikes in Fig. 10, one can notice that, if a packet
loss occurs when the link is underutilized, TCP-AReno
recognizes it as a non-congestion event and its congestion
window reduction is minimized. Otherwise, the loss is
recognized as a congestion event and the congestion window is
halved, which is an important behavior for friendliness to
TCP-Reno.

When a TCP-Reno flow and a TCP-AReno flow coexist, as

Receiver
TCP
proxy

TCP
proxy

Laboratory experiments

Network emulator
(RTT=100msec)

Internet experiments

Network emulator
(RTT=0-25msec)Internet line

(RTT=15msec, 17hops)

L2

IP
TCP

L2

IP
TCP

L2 L2

TCP

L2 L2

TCP

L2 L2

TCP

L2 L2

TCP
L2

IP
TCP

L2

IP
TCP

Sender

Reno AReno

Fig. 9: Network topology and “Layer-2” TCP proxy

0
1
2
3
4
5
6
7
8
9

0 20 40 60 80 100

Time [sec]

C
o
n
ge

st
io

n
w

in
do

w
 [
M

B
]

Bandwidth delay product = 3.75MB
TCP-AReno

TCP-Reno

Fig. 10: Congestion window behavior; separate experiment
(Laboratory measurement, 100Mbps, 10-5 packet loss)

0

1
2
3
4

5
6
7
8

9

0 20 40 60 80 100

Time [sec]

C
on

ge
st

io
n

w
in

do
w

 [
M

B
]

TCP-AReno

TCP-Reno

Bandwidth delay product = 3.75MB

Fig. 11: Congestion window behavior; coexisting flows
(Laboratory measurement, 100Mbps, 10-5 packet loss)

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

shown in Fig.7, the TCP-AReno flow also achives high
throughput againt random packet losses without disturbing
coexisting TCP-Reno flow. Average throughputs of the
TCP-AReno and TCP-Reno flows are 227.4Mbps and
18.5Mbps, respectively, which are almost the same as they
solely exist.

In Fig. 12, throughput of a lone flow is shown for different
bottleneck capacities at the network emulator. In this case, RTT
is set at 20msec. This figure shows the effectiveness of
TCP-AReno in high-speed and lossy environment. Especially
with high random packet loss rate of 10-4, TCP-AReno flow
obtains ten times more throughput than TCP-Reno.

C. Internet measurements
We had a series of Internet measurements in an environment

shown in Fig. 9, where the bottleneck is a 100Mbps link to
FTTH Internet access. No additional packet losses are
introduced at the network emulator.

In Fig. 13, relative throughput of a relayed TCP-AReno flow
and an end-to-end direct TCP-Reno flow is plotted. When no
additional delay is added at the network emulator, both
TCP-AReno and TCP-Reno achieve similar throughput. When
25msec round trip delay is added, packet losses at the Internet
path can cause larger effects on the throughput. Since
TCP-AReno is much robust against ransom packet losses,

TCP-AReno flow has 2.4 times larger throughput than
TCP-Reno flow.

V. CONCLUSION
In this paper, we presented TCP Adaptive Reno, or

TCP-AReno, which provides an efficient and
TCP-Reno-friendly congestion control. By incorporating a
congestion estimation scheme through RTT measurement,
TCP-AReno dynamically adjusts the TCP response function
appropriately.

 Our simulation and experimental results show that
TCP-AReno is friendly to coexisting TCP-Reno flows over a
wide range of link capacities and random packet loss rates,
while achieving higher efficiency than TCP-Reno or even
High-Speed TCP. We also note that the computational cost of
TCP-AReno is comparable to that of HS-TCP.

As a future work, we are planning more extensive Internet
measurements over long-distance high-speed lines and will
tune the response functions. Fairness among flows having
variety of RTTs, as well as the effects of reverse traffic, would
be one of the important issues.

ACKNOWLEDGMENT
The authors would like to thank Prof. Gerla and Prof.

Sanadidi, and Mr. Marcondes, University of California, Los
Angeles, for their collaboration in proposing and evaluating
TCPW-BBE, as well as for their comments regarding
TCP-AReno. The author also would like to thank Prof. Murata,
Prof. Hasegawa, and Mr. Mori for their help in setting up the
Internet measurement environment.

REFERENCES
[1] S. Floyd, “High Speed TCP for large congestion windows”, RFC 3649,

2003.
[2] T. Kelly, “Scalable TCP: Improving performance in high-speed wide area

networks”, In Proc. Of PFDnet03, 2003.
[3] R. Wang, M. Valla, M. Y. Sanadidi, and M. Gerla, "Adaptive Bandwidth

Share Estimation in TCP Westwood", In Proc. of Globecom 2002.
[4] H. Shimonishi, M. Y. Sanadidi, and M. Gerla, “Improving

Efficiency-Friendliness Tradeoffs of TCP in Wired-Wireless Combined
Networks”, In Proc. of ICC2005, 2005.

[5] H. Shimonishi, T. Hama, and T. Murase, “Improving
Efficiency-Friendliness Tradeoffs of TCP Congestion Control
Algorithm”, In Proc. of Globecom2005, 2005.

[6] R. Ferorelli, L. A. Grieco, S. Mascolo, G. Piscitelli, and P. Camarda,
“Live Internet Measurement Using Westwood+ TCP ongestion Control”,
In Proc. Of FLOBECOM2002, 2002

[7] C. Jin, D. X. Wei, S. H. Low, “FAST TCP: motivation, architecture,
algorithms, performance”, in Proc of IEEE INFOCOM2004, 2004.

[8] The network simulator– ns-2, http://www.isi.edu/nsnam/ns
[9] C. Marcondes, M. Y. Sanadidi, M. Gerla, H. Shimonishi. T. Hama, and T.

Murase, “Inline Path Characteristic Estimation to Improve TCP
Performance in High Bandwidth-Delay Networks”, In Proc. of
PDLFnet2006, 2006

[10] Iperf, http://dast.nlanr.net/Projects/Iperf/

0

0.2

0.4

0.6

0.8

1

1.2

Internet (15ms) Internet (15ms) +
Emulator (25ms)

R
e
la

ti
v
e
 t

h
ro

u
gh

p
u TCP-AReno

TCP-Reno

Fig. 13: Throughput of a lone flow

(Internet measurement, 15msec/40msec)

0

100

200

300

400

500

600

700

800

0 200 400 600 800 1000

Bottleneck link capacity [Mbps]

T
h
ro

u
gh

pu
t

[M
bp

s]

TCP-AReno

TCP-RenoLoss rate = 10-6

Loss rate = 10-4

Fig. 12: Throughput of a lone flow
(Laboratory measurement, 20msec)

