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Abstract

TCP Westwood+ is modelled and analyzed using stochastizsi®e equations. It is shown that for
links with Poisson losses and independent and varying delB@P Westwood converges to a stationary
process with a finite average throughput. The resultinguidfinput is computed explicitly, and it is shown
that it does not depend on the filtering coefficienin the bandwidth filter of TCP Westwood+.

I. INTRODUCTION

The Van Jacobson TCP (Transmission Control Protocol) cormgestintrol is the widely-used transport
protocol of the Internet [10]. Since its first proposal, namatide TCP, it evolved through Reno up to
the New Reno TCP which is nowadays the most used TCP in the &ttelm recent years, several
new proposals and implementations of TCP control algoritivage been developed, motivated by a
growing heterogeneity of networks (such as ad-hoc and seeseorks, high speed long distance wireless
networks, and in particular satellite links), for which thetial TCP versions (developed for wireline
networks) was not adequate any more.

In this paper we study the performance of the Westwood+ TCBiorer5], [9], [11] that revealed
to be particularly useful in scenarios affected by losses ®uunreliable links. We focus on a single
connection traversing a bottleneck.

Westwood+ TCP is novel with respect to Westwood TCP because refwa simpler and unbiased
estimator of the available bandwidth. It behaves exactlyf@® New-Reno version in increasing its
window when there are no packet losses. Once a loss occeisebtavior is different: instead of employing
the classic TCP by half window decrease, Westwood+ decrdhsewindow size to a new value that
exactly matches the bandwidth available at the time of cstig® In particular the window size is set
equal to the available bandwidth times the smallest RTT ithhesen observed so far. The rational of this
choice is to keep full the "available pipe”, where the avaligapipe is the available bandwidth times the
minimum round trip time.

The main novelty of Westwood+ is to substitute the "blind” ifmultiplicative decrease mechanism
of classic TCP with an adaptive setting that takes into accthe bandwidth that is available at time
of congestion. This feature reveals to be particularly athgaous in environments affected by losses
not only due to congestion but also to unreliable links sughnathe case of wireless links. From the
point of view of the implementation, it is worth noting thate®twood+ TCP requires modifications only
at the sender side and is completely backward compatiblen Erdéechnical point of view, the issue of
obtaining an end-to-end bandwidth estimation is the mostpex one. This issue has been addressed
and solved in the past [5], [9], [11] and is beyond the scopthisfwork. For sake of completeness we
only sketch the main idea which consists of employing theastr of returning acknowledgment packets
to obtain an estimate of the available bandwidth at the tifrmoogestion. Thus, assuming this bandwidth
estimate, this paper aims at investigating the performafd&estwood+.

In this paper, we wish to study the throughput of persistenP Mlestwood+ connections over long
wireless links (such as satellite links). The latter are abimrized by random losses which are due to
the noise on the channel rather than due to congestion, aatkvitne round trip time has large (random)



variability (e.g. due to link layer features such as the AR@jich are again not directly related to
congestion [8].

Our modeling approach are based on [2]. which, unlike mahgranhodels, takes explicitly into account
the delay variability on the TCP connection. This feature & thodel is needed when considering
Westwood+, since the window size after a loss event is sehetiin of the estimated bandwidth delay
product.

II. TCP WESTWOOD+: BACKGROUND

The novelty of Westwood and Westwood+ TCP is to substitute théiplicative window decrease
behaviour of standard TCP with an adaptive setting aimingattematching of the bandwidth available
along the TCP connection path. The bandwidth estimate isradidaiy filtering and averaging the stream
of returning ACK packets. In particular, when three DUPACHe received, both the congestion window
(cwnd) and the slow start threshold (ssthresh) are set dquille estimated bandwidth (BWE) times
the minimum measured round trip time (RTTmin); when a coarsedut expires the ssthresh is set as
before while the cwnd is set equal to one.

TCP Westwood differs with respect to TCP Westwood+ mainly figrway the available bandwidth is
computed. In details, Westwood+ computes one sample aailaibandwidth every round trip time [11]
using all data acked in one round trip time, whereas WestwWbpdomputes one sample every received
ack. The latter way has been shown to provide "aliased” sanpkat is, the available bandwidth is
overestimated up to several orders of magnitude. Samplethamnefiltered using a low-pass filter. It has
been shown that using different type of low-pass filters damsaffect the performance of TCP in a
significant way [7] so that currently Westwood+ implementdamdard exponential filter such as the one
used by TCP to average round trip time samples [11]. The pseodi® af the Westwood+ algorithm is
reported below:

a) On ACK reception:
cwnd is increased accordingly to the Reno al gorithm
t he end-to-end bandwi dth estinmate BWE i s conput ed;
b) Wen 3 DUPACKs are received:
ssthresh =max(2, (BWE* RTTmin) / seg_size);
cwnd = ssthresh;
c) Wen coarse tineout expires:
ssthresh = max(2, (BWE* RTTmi n) / seg_size);
cwnd = 1;

In other words, Westwood+ additively increases the cwndtasdard New Reno, when ACKs are
received. On the other hand, when a congestion episode mapyestwood employs an adaptive setting
of cwnd and ssthresh so that it can be said that Westwood#ewsllan Additive-Increase/Adaptive-
Decrease paradigm instead of the standard multiplicateedise one.

[1l. M ODELING WESTWOOD*+
A. Modeling with linear stochastic recursive equations
The TCP windowlV,, of Westwood+ at the beginning of theh RTT evolves according to:
W, + if no loss occurred duringth RTT
Wiyt = 1)
B, - RTTyy, if there is at least one loss duringh RTT



where is the additive increase factaRT'T .. is the minimum vale ofRT'T measured so far, an&,,
is the bandwidth estimation obtained as the output of thievidhg low pass filter [11, eq. 1]:

aBp + Qi if no loss occurred duringth RTT
Bpi1 = (2)
B, if there is at least one loss duringh RTT

wherea := 1 — «, and wherex is a constant set equal to 0.9 [11, p. 2R'T,, is the duration of the
nth RTT.

Remark 3.1:An alternative filter is used in [9, eq. 3]. In both cases theatpaf the estimated value
is done every RTT, where as in the original Westwood verstom fitter used to be updated upon arrivals
of ACKs. This caused problems in the case of ACK compressidnshwmade the Westwood TCP too
aggressive and motivated the change to the Westwood+ wessithe filter, see details in [9].

Let Z,, be the indicator that equals 1 if there has been at least asedoring thenth RT'T and is
otherwize 0. Combining (1) and (2) we obtain the vector reigerequation:

711 RTTmin Z n Bin

Wt ) _ g [ W) L ow yhereav = | e . @3)
But B aZy aZy,+ 7 0
RTT, n n
In order to work with the same units we denotg = W,,/RT T ui,. Then (3) becomes
Z 7z _BZn
ny n RTTmm
< g"“ > :An< );" )+C’n where 4,, = , Cp =
n+1 n —7r7 RTﬂnin 274
O‘Zn—RTTn , aln+ Zy 0

(4)
Eqg. (4) is a linear SRE (Stochastic Recursive Equation), sed4,d6], which frequently arises in
the analysis of TCP (see e.g. [1], [3], [13], [14]). Moreowat,elements ofd4,, and C,, are nonnegative.
Matrices that have these properties frequently arise ingiivogl TCP, see [14].

Denote
Xn
Y, = .

IV. STEADY STATE BEHAVIOR

We provide in this Section some general characteristicsel’thprocess. In future sections we shall
use these to compute the throughput.

A. Solving iteratively recursion (4)
Iterating equation (4), we obtain:

Yn = An—IYn—l + Cn—l = An—lAn—ZYn—2 + An—lcn—Q + Cn—l

n—1

n—1 n—1
= => | I] 4G+ (H AZ-)YO (5)

=0 \i=n—j i=0

where forn > j, we use the conventioﬁ[?:‘j1 Ai = Ay 1A, 9. A; and [T, A; = I, where[ is the
identity matrix.



Consider a probability space generated by the sequétdg, C,,)}. The process, is defined on
this probability space simultaneously for all initial catiehs Y, using the recursion (4). Under suitable
conditions,

[e%s} n—1
V=Y | J] 4| Cnujs (6)
j=0 \i=n—j

is well defined, it is the unique solution of (4) and is statignargodic. MoreovetY,, — Y| — 0 a.s.
for all Yy on the same probability space §54,,,C,)}.

B. The eigenvalues of,,

For eachn, one or the other of the off-diagonal elementsAf is zero, so that4,, is either upper or
lower triangular. Then the eigenvalues 4f are the elements on the diagon&l, andaZ,, + Z,,.

A standard sufficient condition for the convergenceYgfto a finite stationary regim&” is that 4,,
is a contracting matrix. Bufi,, is not contracting, since for eaehone of its eigenvalues equals 1. Yet,
one can show the convergencelof to Y," as above using arguments as in [3, p. 8].

V. THROUGHPUT ANALYSIS UNDER INDEPENDENCE CONDITIONS

We shall assume throughout this section the following aggiam (for which we provide later sufficient
conditions).
Assumption Al: A, andY;, are independent anfl;,}, defined as the column vectdf, = (X,,, B,)”.
converges to a stationary ergodic proc&ss= (X}, B)T.

A. First moments of the limit process
Taking expectations in Eg. (4) yields the following

E[Yn-‘rl] = E[An]E[Yn] + E[Cn]a implying ED/O*} = E[AO]E[YE)*] + E[CO]

Hence we get at steady state the following expression fofitsiemoments (provided that— E[Ay] is
invertible):
E[Yy] = (I - E[Ad) ™" E[Co] (7)

B. Throughput

In eq. (7) we obtained the first moments Bf at special points in time: those at round-trip time
boundaries (this is known as the expectation with respetitédPalm measure). To compute the actual
throughput we shall use the following formula:

E[So]
The= ZlRrTy)
So is the number of packets transmitted duriR@T,, which is clearly equal tdVy = Xo - RT Ty (We
suppose that TCP implements the Nagle algorithm [12] and doesransmit partially filled packets).
Due to the independence assumption &RI'T; is independent ofXy. If we denote bye; the row

vector (1,0), the TCP throughput becomes equal to,
E[X{|RTTwin el E[Y]RT Tiin _ RTTin
Thp= —2 = ; = e1(I — E[Ao]) ' E[Co]l =omr- 8
P= " ERTT E[RTT] e1 [4o]) ™ EICo] E[RTT] ®

Let’s find the explicit expression of the throughput for thedwaiing particular loss process.

Assumption A2: Losses occur according to a Poisson process with intensifthe RTT,, sequence is
i.i.d., independent of this loss process.



Remark: AssumptionA2 implies that the number of losses that occur duriR§7,, only depends on
RTT, and not on the number of losses duriRg'T}. for k # n. This implies thatX,, is independent of
Zn, of Z, and of RT'T,,. Thus, the fact thaR,, are i.i.d. implies thafX,, is independent ofi,,. The same
arguments also hold for showing that, is independent ofd,,. We conclude therefore that Assumption
A2 implies AssumptiomAl.

AssumptionA2 is natural in the context of long wireless links, such asIs@ecommunications. In
such links,RT'T,, may be quite variable due to link layer retransmissions (ARDe loss process itself
can be caused by external factors as transmission erroseadny noise, equipment failures, etc. In view
of A2, the conditional probability of at least one loss duriRg'T,, is 1 — exp(—vRTT,). Then the
(unconditional) probability of no loss event duridtf{'T,, is given byp := E[1 — exp(—vRTT,)]. Also
defineq := Elexp(—vRTT,)/RTT,],§=1—qand :=1—p.

Since TCP reduces its window once (or ideally should) for anplmer of losses during a round-trip
time, we have in the view of assumptié2, F[Z,] = p. Hence,E[A,,] has the following form:

D p
A=FEA,=1{_ _
[4n] (ozqRTTmin o+ ap) ©)

One can now form the matrix/ — E[A,]), invert it and compute the throughput of TCP using (8).
But before doing that, let’s first check whether the inversiéithe matrix (I — E[A,]) is possible. This
is equivalent to studying the stability conditions of oustm. If for any particular parameter setting
the inversion is not possible, this will mean that the protds not stable under this setting and that the
throughput of TCP will infinitely grow (if the parameter seginemains the same).

Note that in reality one cannot have this explosion of theughput. At some moment, the network
starts to congest and limits the TCP throughput, which adstdéads to a change in the network setting
otherwise the throughput would continue growing.

C. Stability and performance analysis

Consider the row sums of (9). On the first row, the sum is cle&rl§ror the second row, we have
@(qRTTmin + p) + o This is at most 1, sinc®7'T,,i, < RTT, and

p+ qRTTiyin = E[1 — exp(—vRTT,)(1 — RTTin/RTT,)] <1 (10)

Hence, the eigenvalues éf are of magnitude at most 1.

Let’s first consider the border cases, which correspond to atable system, and afA that is a
stochastic matrix. lfo = 1, then theA matrix is stochastic for all round-trip time processes, tmel
system is unstable. i < 1, thenA is stochastic iff we have equality in equation (10), whicledgivalent
to the condition thatlR7'T,, = RRTin &.S., OrE[RTTy] = RTTyin-

On the other hand, it < 1 and E[RTT,] > RTTwin, then we have a strict inequality in (10), and it
follows thatA is a sub-stochastic matrix. Its eigenvaluewhich has the largest norm, is a real number
smaller than 1. This implies thdt— A is invertible and hence an explicit expression for the tghgut
exists. When forming the inversg — E[A])~}, it turns out that the first column is independentcof
Hence,E[Yyp] and the average throughput is independent of the parameter

These observations can be summarized as follows.

Theorem: Under Assumption A2, Westwood+ TCP converges to a statigmargess, with a finite average
throughput, iffa < 1 and E[RT'T,] > RTTyn. If either condition is violated, the system is unstable
and the throughput increases without limit. Furthermore, dherage throughput does not dependon
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Fig. 1. Throughput for varyindRTTwmin. In this scenario, the average RTT is 0.1 s, and it is divided into a cdr=starponent
RTTwin and a stochastic, exponentially distributed, component. The solid curve iseslulting average throughput, and the
dotted curve is the average of the bandwidth estinfate

In reality, the casex = 1 corresponds to a bandwidth estimation that does not chaiitbetime. So
the protocol will get a throughput function of the initiallue of B,,. One needs a value of strictly less
than one to update the bandwidth estimation and to make thteqml throughput converge to a value
independent of the initial value a8,,.

In summary, when TCP Westwood+ operates over a high speeafinknstant round-trip time with
random errors, it fully utilizes the available resourcesl atives the network into congestion. If the
round-trip time varies for any reason, as for example retrassions at the link-level or mobility, TCP
Westwood+ can not saturate arbitrarily high capacity neteoOne has to compute the expression of
the throughput in (8), and if it found to be less than the amé@ bandwidth, this will mean that TCP
Westwood+ will not drive the network into congestion undais tsetting. One can always remove the
congestion events by reducing the value to which TCP Westweets its window at the onset of a loss.
This can be done for example by artificially lowering the minimuwound-trip time of the connection.

VI. NUMERICAL EVALUATION

Assume, as in the previous sextion, that tR&'T,, sequence is i.i.d., and that the loss process is
Poisson with intensity, independent of th&T'T,, process. For a concrete example, assumeRiat, =
RTTmin + dn, Whered,, is exponentially distributed with averagg¢\. Then we can compute

p=E[l —exp(—v(RTT),))|=1- DY exp(—vRT Tyin) (11)
q = Elexp(—vRTT,)/RTT,] = A exp(ART Tin) / exp(—t)dt (12)
(V+N)RT T t

A. Influence ofRT T,

Consider the scenari®[RT'T,] = 0.1, with RT'T,,;, varying and\ chosen so that the average total
delay is constant. Also set= 0.1, § = 1500, anda = 0.9. Figure 1 displays the throughput &8 T},
varies.
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Fig. 2. Throughput for varying RTT variance. In this scenario, theraye RTT is 0.1 s, and it is divided into a constant
componentRT Tyin = 0.05 and a stochastiE (V, 20NV )-distributed component. The standard deviation of the RTI(§/v/N,
decreasing to the right in the figure. The solid curve is the resulting avehmgughput, and the dotted curve is the average of
the bandwidth estimaté.

B. Influence of RTT variance

To see how the variance of the RTT influences the throughput,onsider a scenario where both the
minimum and the average RTT are fixed, but the variance var@sloTthis, assume that, follows a
['(N, \)-distribution, i.e., it is the sum oV exponentially distributed delays. Thdrd,,] = N/ and
o2(d,) = N/A2. For this distribution we get

A N
p=1-— PR exp(—vRT Tin) (13)

¢ = A exp(ART Tonin) — ( : )Nl/ LD 4 (14 NRT D)Vt (1)
= X min) =/ Ay - min
T(N) \v+ A WANRT T

Now put RTTin = 0.05, A = 20N, then for all NV, the average total RTT is 0.1, and the variance
decreases a¥ is increased. The resulting throughput is shown in Figure 2.

C. Parameter limits

In Figure 1, we see that the throughput tends to infinitRd¥ ,.;, approache€[RTT,,]. This confirms
the theoretical results, since in this case the system besamstable.

On the other hand, in Figure 2, the throughput approaches a fiaite whenV — co. In the limit,
RTT, approaches the constant value 0.1 s. Howek&i7 i, is kept artificially fixed at a smaller value.
This smallerRT T, is the reason the system remains stable.

D. Estimation bias

For both considered scenarios, one can also observe thaatigwidth estimateé3,, exhibits a small
bias (the differense between the solid and the dotted c)yraed that this bias increases with the variance
of RTT,,.



VIlI. CONCLUSIONS

This paper considers a model for TCP Westwood+ using the framkeof stochastic recursive equa-
tions. In the case of independent delay and a Poisson loseg®,oit is shown that if the round-trip time
is constant, throughput is unbounded. This means that WestwdCP can achieve full utilization for
arbitrarily high link capacities. On the other hand, if treund-trip time varies for any reason, as for
example retransmissions at the link-level or mobility, TCBstWood+ converges to a stationary process
with finite average throughput. By computing the resultingotighput explicitly, it is shown that the
throughput is independent of the parameter in Westwood's the bandwidth filter.

The results are illustrated by numerical computation of terage throughput, for delays with expo-
nential or gamma distribution.
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