
Transmission Timer Approach for Rate Based
Pacing TCP with Hardware Support

Katsushi Kobayashi
ikob@koganei.wide.ad.jp

Abstract—Transmission timer framework is proposed for
rate based pacing (RBP) TCP, in order to mitigate a bursti-
ness in TCP slow-start. In this approach, host software spec-
ifies the time for each packet that should be sent out, and
gives a precise interframe gap for the data stream. An RBP
TCP implementation including a transmission timer aware
network interface card is demonstrated. Also, a quantita-
tive analysis of the burstiness in TCP slow-start is done with
a burstiness index that we are proposed.

I. INTRODUCTION

TCP slow-start brings an exponential congestion win-
dow growth until detecting congestion. After TCP slow-
start, the congestion window is expected to be an appro-
priate for the current end-to-end network capacity, i.e. the
bandwidth delay product. Current TCP slow-start imple-
mentation exhibit a burstiness packet traffic behavior, since
window size jumps up each round-trip-time (RTT) period.
This burstiness leads a packet losses on the queue of bot-
tleneck node, even though the congestion window is very
small compared with the bottleneck bandwidth capacity.
This loss makes slow-start to stop in early phases, and sup-
press throughput.
Rate-based pacing (RBP) for avoiding this burstiness

has been studied to improve TCP performance with both
simulation and implementation approaches [1], [2]. On
fast network, precise RBP management is required, e.g.,
packets should be sent 60 μsec. interval in the case of
200 Mbps bandwidth and 1500 bytes packet size. This in-
terval is very small compared with OS scheduler’s order
(1 - 10 msec.). It is difficult to accomplish RBP in this
order without hardware support.
Hiraki et al. proposed a precise packet pacing frame-

work with network interface card (NIC) hardware support
[3]. TCP stack in operating system computes interframe
gap with congestion window size and RTT for every TCP
packets. TCP stack passes the packet with the interframe
gap to the NIC device via IP and ethernet layers. The
NIC maintains all TCP connections in a table, and sched-
ules packet for each flow. When NIC takes a packet to
transmit with interframe gap, NIC identifies the connec-

National Institute of Communications Technology, JAPAN

tion using the header data, and schedules the transmis-
sion time computed with the last packet transmitted time
recorded in the table. NIC should interpret transport pro-
tocol, and should have connection management, i.e. ini-
tiate, lookup, removal, functions. Takano et al. proposed
an precise pacing without any special hardware inserting
dummy packet [4]. Ethernet layer module computes the
packet gap with the window size and the RTT obtained
with calling back upper layer protocol control block, i.e.
TCP control block (TCPCB) and inserts appropriate in-
terframe gap using dummy packets. In RBP approaches
above mentioned, lower layer protocol module, ethernet
driver or NIC hardware, depends on upper transport proto-
cols. This layer violation arises implementation issues for
the modules. Transport protocol beyond TCP, e.g. TFRC,
DCCP, SCTP are being standardized and developed, and
other newer protocols will be coming . Precise RBP may
be also useful for them, and more important for the pro-
tocol lacking of acknowledge pacing mechanism shown in
TCP. For minimizing the effort to support new protocols,
more simplified RBP approach is expected.
In this paper, we show a precise packet pacing frame-

work using transmission timer for each packets with hard-
ware support in section II. We present a transmission timer
NIC implementation using network processor, and a pre-
cise RBP TCP stack implementation on FreeBSD, in III
and IV, respectively. In section V, we demonstrate the per-
formance of our RBP TCP implementation in TCP slow-
start and present an index for burstiness.

II. TRANSMISSION TIMER

Interframe gap, g, in RBP TCP can be obtained as the
following based on RTT , cwnd, and MSS as round-
trip-time, congestion window size, and maximum segment
size, respectively:

g =
RTT

cwnd
· MSS (1)

When higher data rate communication, interframe gap in
RBP is smaller than the scheduler tick of operating sys-
tem as mentioned in the previous section. During TCP
slow-start, congestion window cwnd size is increased by



NIC

Ethernet

IP

TCPUDP

Application
DATA

Queue Manager

UDP/DATA

IP/UDP/DATA

IP/UDP/DATA

Packet

DATA

TCP/DATA

IP/TCP/DATA

IP/TCP/DATA

Packet

Packet

Fig. 1. Transmission timer management in Host

receiving each acknowledge packets, and cwnd grows in
exponentially. Therefore, the interframe gap for RBP is
frequent changing in short period. Usual queuing imple-
mentation as ALTQ and QDISC provide various queuing
disciplines, and enables rate control for each and/or group
of flow as CBQ, WFQ, etc. However, these framework
focus fairness and prioritization among multiple flows in
longer term more than RTT , and cannot follow dynamic
interframe gap changing requirement from transport layer.
Some packets should be sent in sooner than other packets
even in the same flow, e.g. retransmit segment on TCP. For
minimizing implementation effort, the framework should
not call back upper layer protocols. We summarize the re-
quirements as the followings:

• A precise packet pacing more than OS scheduler gran-
ularity.

• Follow frequent interframe gap (rate) changing.
• Re-order packets at sender host even on the same con-
nection.

• Free from upper layer (transport) protocols.
For accomplishing the above, we adopt per packet trans-

mission timer (Fig. 1). The packet transmission timer field
is added on the data structure handling network packet
in operating system, e.g. mbuf in FreeBSD, skbuf in
Linux. The transmission timer represents when the packet
should be sent out, and also requires enough wrap-around
period. The timer can be specified in system time form
as timeval structure in UNIX. A network device sched-
ules the packet transmission based on the timer value. If
the timer has an appropriate granularity for the interface
bandwidth, precise RBP could be accomplished. Trans-
mission timer enables any type of interframe gap control
not only RBP in TCP slow-start but also packet re-order
before sent out. Note that some transports are sensitive
for packet re-order, and the transmission timer value must
be decided keeping with the packet order in this case. A
packet is simply passed to a lower layer with transmission

timer. A lower layer module is not required to know trans-
port protocol and to call back the protocol control block of
the transport.
The timer value can be manipulated by every layer. In

case of TCP slow-start, the timer value is specified using
cwnd and RTT by TCP stack. In other transport frame-
work, the timer value can be obtained with either window
based control or rate based. On usual queuing approaches,
the transmission time value can be decided by queuing
manager, possibly taking account an existing timer value
specified by upper layer. Also, application program can
specify timer value for each UDP packet, if an appropriate
API is provided.

III. NETWORK INTERFACE SUPPORT

In our approach, a packet data with transmission timer
attribute is passed from CPU to NIC. Transmission timer
expressed in system time style is useful on operating sys-
tem, since it is difficult to predict a processing delay in op-
erating system, and wall clock enables to share common
timer among kernel sub-modules. However, usual BUS
system does not provide real time clock sharing function,
and a NIC attached on host BUS cannot share it between
the CPU.
A couple of approaches are possible to notify transmis-

sion timer information to NIC lacking common real time
clock system. The first is that NIC has another real time
clock, and the clock is synchronized with the host one. The
second is that the transmission timer is converted from ab-
solute time expression to relative time, when the device
driver initiates packet transmission. The first approach re-
quires not only packet transmission timer function but also
a real time clock system on NIC. The synchronize action
should be done in carefully, since clock adjustment ac-
tion may cause unexpected behavior of packet transmis-
sion timing. Using the second does not require any real
time clock related mechanism on NIC side. A fluctuation
would be happen due to data transmission delay from host
to NIC. However, this fluctuation effect might be a limited
in the current host performance compared with network
bandwidth.
We developed a NIC having per-packet transmission

timer function for precise RBP. The NIC is based on Intel
IXP2400 network processor development platform hard-
ware, ENP2611 from Radisys Corp. ENP2611 has 64-
bit/66MHz PCI BUS, and has three gigabit ethernet inter-
faces. The NIC function is implemented as a software of
ENP2611 board. The ENP2611 behaves as a NIC device
attached on host PCI BUS with mapped I/O, DMA, and
Tx, Rx interrupt. Although ENP2611 has real time clock
system itself, we adopt relative transmission timer expres-



sion when passing a packet to NIC. The NIC supports three
transmission classes, transmission timer, high priority, and
best effort class. High priority and best effort classes pro-
vide the same feature as usual NIC.
The NIC can manage packet transmission time in

26.67 nsec. granularity. This granularity corresponds to
the packet timing control limit of IXP2400 as 16 cycles of
600MHz system clock. The transmission timer class man-
ages a packet using two level schedulers, rough and pre-
cise one. The rough scheduler has 4,096 ring time slots.
Each slot is given 27.3 μsec. (1,024 × 26.67 nsec.) time
window. Therefore, the NIC can make up to 111 msec.
(4,096 × 27.3 μsec.) delays. This delay limit is larger
than usual kernel scheduler tick, and can support any delay
combined with the NIC and operating system scheduler.
The ring time slots proceed each time window unit. The
packet is assigned to an appropriate slot using own trans-
mission timer value. Each slot can accept up to 15 packets,
the packets in a slot are sorted into transmission timer or-
der. If a packet is found in the first slot, the precise sched-
uler takes all packets, and schedules it to be sent out.
When host requires hardware packet pacing, the host

specifies the timer value in the DMA descriptor as 1/232

second unit. NIC schedules the packet transmission time
using the timer value.

IV. DEVICE DRIVER AND TCP IMPLEMENTATION

We implemented transmission timer framework on
FreeBSD 4.10 including the device driver for the NIC
above mentioned. We add a transmission timer field in
mbuf structure as struct timeval format. The de-
vice driver compares the timer field and the system time.
If the timer field represents later time than the system time,
the device driver computes the difference of them, and
specifies it into the DMA descriptor to handle correspond-
ing packet data. Otherwise, the driver does not specify any
delay, and NIC sends the packet as soon as possible.
We also implemented RBP into the TCP New Reno

stack. Note that the original TCP New Reno stack per-
formance of FreeBSD shown poor performance under fast
long network. The original TCP stack does not cache the
mbuf pointer last transmitted, and has to traverses un-
acked packet data already sent out from the oldest to the re-
cent one at each packet transmission. This traverse process
suppresses TCP performance in larger congestion window.
We replaced this buffer traverse part in tcp output()
borrowed from NetBSD 2.0. When sending out a TCP
segment in slow-start, the interframe gap time is computed
using the measured RTT and the cwnd packet by packet.
The transmission timer value is obtained as the sum of the
interframe gap and the timer value of the last packet cached

TCP Sender
DELL PE2650
w EN2611 NIC

TCP Reciever
DELL PE2650
w BCM5703

Network Emulator
based on ENP2611
1Gbps/100msec delay

Packet Capture
Agilent Router Tester

1Gbps 1Gbps

Fig. 2. Experimental setup for TCP performance evaluation

in the TCPCB. If the transmission timer value shows ker-
nel scheduler tick or more later, the sending out action
is postponed to the next kernel scheduler interrupt. This
RBP is similar to other usual software based approaches,
and can enable a rough controlled RBP without NIC sup-
port [3]. For precise interframe gap computation, an accu-
rate RTT measurement is required. Original TCP already
has RTT measurement function. However, this measure-
ment unit is based on kernel scheduler tick, and is insuf-
ficient accuracy for precise RBP. Another RTT measure-
ment function is implemented into TCP stack. The accu-
racy of measurement is in μsec. In our RBP TCP imple-
mentation on FreeBSD, less than 1,000 lines hacking was
required except the device the driver of the NIC. Almost
all modification is mainly done on TCP stack. The modifi-
cation would be a light compared with the original TCP re-
lated code about 10,000 lines on FreeBSD. Also, we didn’t
make any modification in IP stack, since the timer informa-
tion is handed over with mbuf.

V. RBP TCP PERFORMANCE

The performance evaluation configuration is shown in
Fig. 2. We use DELL Poweredge 2650 server having
3.06GHz Xeon CPU with 1GB RAM for both sender and
receiver. The gigabit ethernet NIC of the sender side
is the NIC we developed, and the sender side is Broad-
com 5703 equipped on Poweredge 2650 server. The OS
of all hosts is FreeBSD 4.10. TCP delayed acknowledge
function on the receiver side is disabled for accurate RTT
measurement. The network emulator box is also based
on ENP2611 [5]. The emulator provides 100 msec. de-
lay between sender and receiver with wire-rate speed at
full-duplex 1000BaseTX. All experiments have been con-
ducted with iperf 1.7.0, and packets are captured by Ag-
ilent Router Tester system with 20 nsec. accuracy time
stamp.
Our RBP implementation accesses real time clock at

every packet. The real time clock access is expensive
for the host, since the real time clock is usually attached
outside of CPU. We made preliminary evaluation for the
effect of real time clock access to the RBP TCP perfor-
mance. The configuration is the same shown in Fig. 2,



elapsed time accuracy of result
microtime() ∼ 5 μ sec. μ sec.
getmicrotime() < 30 nsec. depend on

scheduler clock
New getmicrotime() 120 nsec. μ sec.
Note that the elapsed time results of the above including the
overhead of reading TSC. The overhead of reading TSC is a
larger than original getmicrotime(). Therefore, the result
of original getmicrotime() includes unnegligible error.

TABLE I
PERFORMANCE DIFFERENCE BETWEEN GETTING CURRENT

TIME.

and Broadcom 5703 is used for TCP sender interface in-
stead of ENP2611 NIC with no delay on the network
emulator. When using original real time clock access,
microtime(), TCP data transfer throughput is sup-
pressed 20% due to CPU overload. Faster call is prepared
for FreeBSD as getmicrotime(). This call refers
the cached value updated at each scheduler timer period.
Therefore, the accuracy of getmicrotime() depends
on the schedular timer, and the accuracy is not an enough
for precise RBP. We implemented a new call that returns
a more accurate clock value and is faster than usual calls.
The new call is implemented with CPU clock time stamp
counter (TSC) in Intel x86 architecture. TSC counts CPU
clock cycles, and is used for performance estimation for
a program code in an accurate granularity [6]. When up-
dating the clock value cache for getmicrotime(), the
TSC value at the schedular period is also cached. The new
call evaluates the gap between the current TSC value and
the cached one, and corrects the cached clock value for
getmicrotime() with the gap of TSC. We compared
the the performance getting a real time clock value using
TSC. The result is shown in Table I. If microtime() is
called at each packet sending, the transmit throughput is
limited up to 200K packet/sec. only with real time clock
access, i.e. up to 2.4 Gbps in the case of 1500 Bytes packet
size. When replacing with the new call, the throughput
is 300M packet/sec. that corresponds more than 3 Tbps
transmit bandwidth. The microtime() replaced ver-
sion RBP TCP reaches the same data transfer performance
with the original TCP as 940 Mbps.
The TCP packet sequence plots are shown in Fig. 3. Al-

though we evaluated on the same configuration, the win-
dow growth trends are clearly different. This is because
the RTT measurement results are somewhat larger on RBP
probably due to a delay added on RBP process.

We analyzed RBP TCP behaviors in slow-start using the
interframe gaps with captured packets. Fig. 4 shows the in-

6000

5000

4000

3000

2000

1000

0

Pa
ck

et
 s

eq
ue

nc
e

3.53.02.52.01.51.00.50.0
Time (sec.)

No pacing

Software
pacing only

Pacing with
hardware

End of slow-start

Fig. 3. Sequence of packet plot of original TCP, software-only
RBP TCP, and RBP with hardware support. (HZ=100)

terframe gap distribution on various configurations. Since
the limitation of capturing system packet buffer (60MB),
the maximum window size in experiments are limited to
2.5MB, 1770 segments × 1480 MSS. In all RBP TCP, the
rate of congestion window increase in suppressed com-
pared with the original TCP. The interframe gap fluctua-
tion is keeping under 50 μsec. on RBP with hardware pac-
ing during slow-start Fig. 4(a) and (d). In software only
RBP, the fluctuation of interframe gap depends on the ker-
nel scheduler tick, 10 msec. and 1 msec. in Fig. 4(b) and
(e), respectively.
Fig. 4 plots may present the RBP TCPmitigates a bursti-

ness of original TCP. However, it is difficult to understand
how much burstiness is mitigated. We define a quantitative
index for comparing burstiness in TCP slow-start. We de-
fine a virtual bottleneck bandwidth BW (t) depending on
connection time t using exponentially growth cwnd and
RTT . If we assume no delayed acknowledge mechanism,
the bandwidth is as the following:

cwnd = 2
t

RTT · MSS (2)

BW (t) = cwnd � RTT = 2
t

RTT · MSS � RTT (3)

Interframe gap σi(t) for i-th packet assuming the virtual
bottleneck bandwidth at the packet transmission time ti is
estimated as the following:

σi(t) =
MSS

BW (t)
=

RTT

2
ti

RTT

(4)

A delay di until i-th packet starting transmission can be
obtained taking into account accumulation of the buffered
packets previous sent as:

di = max (di−2 + σi−1 − (ti − ti−1) , 0) (5)

Burstiness index bi for each packet can be obtained nor-
malizing by RTT, and burstiness index of the connection
B is obtained as the followings:

bi = di � RTT (6)



10-4

10-3

10-2

10-1

In
te

rf
ra

m
e 

ga
p 

(s
ec

.)

3.53.02.52.01.51.00.50.0
Time (sec.)

Interframe gap in TCP slow-start with hardware pacing. (HZ=100)

(a)

10-4

10-3

10-2

10-1

In
te

rf
ra

m
e 

ga
p 

(s
ec

.)

3.53.02.52.01.51.00.50.0
Time (sec.)

Interframe gap in TCP slow-start with software pacing only. (HZ=100)

(b)

10-4

10-3

10-2

10-1

In
te

rf
ra

m
e 

ga
p 

(s
ec

.)

3.53.02.52.01.51.00.50.0
Time (sec.)

Interframe gap in TCP slow-start with original stack. (HZ=100)

(c)

10-4

10-3

10-2

10-1

In
te

rf
ra

m
e 

ga
p 

(s
ec

.)

3.53.02.52.01.51.00.50.0
Time (sec.)

Interframe gap in TCP slow-start with hardware pacing. (HZ=1000)

(d)

10-4

10-3

10-2

10-1

In
te

rf
ra

m
e 

ga
p 

(s
ec

.)

3.53.02.52.01.51.00.50.0
Time (sec.)

Interframe gap in TCP slow-start with software pacing only. (HZ=1000)

(e)

10-4

10-3

10-2

10-1

In
te

rf
ra

m
e 

ga
p 

(s
ec

.)

3.53.02.52.01.51.00.50.0
Time (sec.)

Interframe gap in TCP slow-start with original stack. (HZ=1000)

(f)

Fig. 4. interframe gap plot in TCP slow-start

Scheduler tick 10 msec. 1 msec.
RBP with HW 1.5 × 10−7 1.5 × 10−7

Software only RBP 4.1 × 10−4 5.9 × 10−6

no RBP 0.31 0.31

TABLE II
BURSTINESS INDEX IN SLOW-START

B =
N∑

i

bi � N (7)

Larger index value represents more burstiness traffic be-
havior in slow-start. The index of original TCP slow-start
without any limit might be reach 0.5, since the virtual de-
lay plot should be saw-tooth pattern. Fig. 5 and Table II
shows the burstiness index per packet plot and connection,
respectively. In order to avoid the error just after the con-
nection startup, we ignore first 20 packets for burstiness
index of slow-start. 5,000 captured data packets have been
taken into account in order to evaluate burstiness index of
slow-start.
The burstiness indices of connection without RBP TCP

are quite large compared with other RBP TCP results.
Software only pacing contributes to mitigate the burstiness
of TCP not only slow-start also overall time. The result of
burstiness index on software only TCP RBP on 1 msec.
scheduler tick, 5.9 × 10−6, shows comparable with hard-
ware support results, 1.5×10−7. In burstiness plot for soft-
ware only RBP, Fig.5(b) and (e), a small burstiness is still
found at just after connection start. The order of per packet
index is 10−2 and 10−3 on 10 and 1 msec. scheduler clock
tick, respectively. On hardware RBP support, burstiness
indices don’t depend on kernel scheduler clock tick res-
olution, and burstiness of slow-start is clearly suppressed
compared with other approaches (Fig.5(a) and (d)).

VI. CONCLUSION AND FUTURE WORK

We present that the packet pacing using transmission
timer for each packet provides simple collaboration frame-
work through network layers, not only operating system
but also network interface hardware. We also propose a
burstiness index for TCP slow-start using virtual bottle-
neck. The burstiness index might help to improve TCP
slow-start performance with giving quantitative scale.
We also implemented transmission timer feature on

UDP. FreeBSD provides SO TIMESTAMP socket option,
which returns the datagram received time as ancillary data
in timeval format [7]. Linux also provides the the sim-
ilar option. The options can be used only when receiving
a datagram. We extended SO TIMESTAMP option to both



10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

Bu
rs

tin
es

s 
In

de
x 

pe
r 

pa
ck

et

500040003000200010000
Number of packet sequence

pacing with hardware. (HZ=100)

(a)

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

Bu
rs

tin
es

s 
In

de
x 

pe
r 

pa
ck

et

500040003000200010000
Number of packet sequence

software only pacing. (HZ=100)

(b)

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

Bu
rs

tin
es

s 
In

de
x 

pe
r 

pa
ck

et

500040003000200010000
Number of packet sequence

no pacing. (HZ=100)

(c)

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

Bu
rs

tin
es

s 
In

de
x 

pe
r 

pa
ck

et

500040003000200010000
Number of packet sequence

pacing with hardware. (HZ=1000)

(d)

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

Bu
rs

tin
es

s 
In

de
x 

pe
r 

pa
ck

et

500040003000200010000
Number of packet sequence

Software pacing only. (HZ=1000)

(e)

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

Bu
rs

tin
es

s 
In

de
x 

pe
r 

pa
ck

et

500040003000200010000
Number of packet sequence

no pacing. (HZ=1000)

(f)

Fig. 5. Per Packet burstiness index plot in TCP slow-start

sending and receiving. When an application enables the
option, the application can specify the appropriate sending
time for each packet using sendmsg(). We believe the
option is a useful for a precise timing control compared
with the usual way as busy-loop for making an interval.

REFERENCES

[1] V. Visweswarauah and J. Heide-
mann,”Rate Based Pacing for TCP”,
http://www.isi.edu/lsam/publications/rate based pacing/

, 1997
[2] A. Aggarwal et al.,”Understanding the Performance of TCP Pac-

ing”, in Proceedings of IEEE Conference on Computer Commu-
nications(INFOCOM), Mar. 2000.

[3] K. Hiraki et al.,”End-node transmission rate control kind to in-
termediate routers - towards 10Gbps era”, in Proceedings of the
2nd International Workshop on Protocols for Fast Long-Distance
Networks, Feb. 2004.

[4] R. Takano et al.,”Design and Evaluation of Precise Software Pac-
ing Mechanism for Fast Long-Distance Networks”, in Proceed-
ings of the 3rd International Workshop on Protocols for Fast
Long-Distance Networks, Feb. 2005.

[5] K. Nakauchi and K. Kobayashi,”Studying Congestion Control
with Explicit Router Feedback Using Hardware-based Network
Emulator”, in Proceedings of the 3rd International Workshop on
Protocols for Fast Long-Distance Networks, Feb. 2005.

[6] Intel Corp., “Intel Architecture Software Developer’s Manual,
Vol. 2, Instruction Set Reference”, 1999

[7] W.R. Stevens, “UNIX Network Programming Vol.1, Second Edi-
tion:Networking API’s Sockets and XTI ”, Prentice Hall, 1998


