Evaluation of Rate-based Protocols for Lambda-Grids

Ryan X. Wu and Andrew A. Chien Computer Science and Engineering University of California, San Diego

> PFLDnet, Chicago, Illinois Feb 17, 2004

Outline

- Communication Challenges in Lambda-Grids
- Rate-based Protocols
- Evaluation
- Related Work
- Conclusion

Lambda-based Communication

Lambda-Grids

DWDM(Lambda)

Lambda (wavelength) = end-to-end dedicated optical circuit

DWDM enables a single fiber to have 100's of lambdas (10Gig) =>Terabits per fiber

Lambda-Grid: shared resource pool connected by on-demand "lambda's"

Lambda-Grids Differ from Traditional IP Networks

- High speed dedicated connections (optical packet or circuit switching)
- Small number of endpoints (e.g. 10³ not 10⁸)
- Plentiful Network bandwidth: Network >> Computing & I/O speed
- => Congestion moves to the endpoints

New Communication Patterns

- New applications are multipoint-to-point
 - Example: fetching data from multiple remote storage sites to feed real-time, local data computation needs
- Example: BIRN

Communication Challenges

- Efficient Point-to-Point
- Efficient Multipoint-to-Point
- Intra- and Inter- Protocol Fairness
- Quick Response to Flow Dynamics

Rate-based Protocols

- TCP and its variants for shared, packet switched networks.
 - Internal network congestion; Router assistance.
- Rate-based Protocols to fill high bandwidth-delay product networks
 - Explicitly specified or negotiated transmission rates
 - UDP for data channel (user level implementation)
 - Differ with intended environment of use and performance characteristics
- Three Protocols
 - Reliable Blast UDP (RBUDP) [Leigh, et. al. 2002]
 - Simple Available Bandwidth Utilization Library (SABUL/UDT) [Grossman, et. al. 2003]
 - Group Transport Protocol (GTP) [Wu & Chien 2004]

Reliable Blast UDP (RBUDP)

- Designed for dedicated or QoS enabled links
- Sends data on UDP at fixed rate (user specified)
- Reliability for Payload achieved by Bitmap Tally
 - Send data in series of rounds
 - Received data blocks vector transmitted at the end of each round
- TCP connection used to reliably transmit receive vector information
- No rate adaptation

SABUL/UDT

- Designed for shared network
- Sends data on UDP with rate adaptation
- Combination of Rate Control, Window Control, and Delay-based control.
 - Rate control: Slow start, AIMD
 - Window control: Limit number of outstanding packets
 - Delay-based control: Fast response to packet delay
- TCP friendly

Group Transport Protocol: Why Groups?

- Point-to-point protocols do not manage endpoint contention well
- Groups enable cross-flow management
 - Manage concurrent data fetching from multiple senders
 - Clean transitions for rapid change (handoff)
 - Manage fairness across RTTs

How GTP Works: at Flow Level

Data and control flows

- Sender:
 - Send requested data at receiverspecified rate
 - Receiver:
 - Resend data request for loss retransmission
 - Single flow control at RTT level
 - Update flow rate and send rate request to sender
 - Single Flow Monitoring

How GTP Works: Central Scheduler

Capacity Estimator: for each flow

- Calculate the Increment:
 Exponential increasing and loss proportional decreasing;
- Update estimated rate
- Max-min Fair rate allocation
 - Allocate receiver bandwidth across flows in a fair manner
 - Estimated rates as constrains

Experiments

- Dummynet emulation and real measurement on TeraGrid
- Three communication patterns:
 - Single flow; Parallel flows; Converging flows
- Performance metrics
 - Sustained throughput and loss ratio
 - Intra-protocol fairness
 - Inter-protocol fairness
 - Interaction with TCP

Single Flow Performance

•SDSC -- NCSA, 10GB transfer (1Gbps link capacity), 58ms RTT

Parallel Flow Performance

- SDSC -- NCSA, 10GB transfer (1Gbps link capacity), 58ms RTT
- Three parallel flows between sender/receiver

Converging Flow Performance

SDSC -- NCSA, 10GB transfer (1Gbps link capacity), 58ms RTT

Converging flows:

Intra-Protocol fairness

- Fairness Index = Minimum rate / Maximum rate
- Fair for converging flows?
- => Others (incl. TCP) don't achieve fairness with variable RTT, GTP does

Inter-Protocol Fairness: Parallel Flows

- Interaction among rate-based protocols: parallel flow case
- Conclusion: parallel different aggressiveness

Inter-Protocol Fairness: Converging Flows

- Interaction among rate-based protocols: Converging flows
- Convergent: don't coexist nicely this is a problem

Inter-Protocol Fairness: Interaction with TCP

TCP throughput in presence of rate-based flow

Influence ratio =

TCP throughput without rate-based flow

	Rate based and TCP		Single TCP	Influrence
	Rate Based	TCP	Throughput	Ratio
RBUDP	467Mbps	450Mbps	912Mbps	49.3%
UDT	552Mbps	380Mbps	912Mbps	41.6%
GTP	612Mbps	328Mbps	912Mbps	35.9%

Table 3: RBUBP, UDT, GTP each runs with a single TCP flow, point-to-point on a 1Gbps link on the cluster.

Parall	lel :	flov	٧S
0.3n	าร	RT1	Г

	Rate based and TCP		Single TCP	Influrence
	Rate Based	TCP	Throughput	Ratio
RBUDP	771Mbps	2.1Mbps	24.3 Mbps	8.6%
UDT	751Mbps	23.6Mbps	24.3Mbps	97.2%
GTP	760Mbps	9.7Mbps	24.3Mbps	40.0%

Table 4: RBUBP, UDT, GTP each runs with a single TCP flow, point-to-point on a simulated 800Mbps dummynet link with 30ms RTT.

Converging flows 30ms RTT

Related Work

- Other rate based protocols
 - NETBLT, satellite channels [Clark87]
 - RBUDP on Amsterdam—Chicago OC-12 link [Leigh2002]
 - SABUL/UDT [Grossman2003]
 - Tsunami
- Other high speed protocol work
 - HSTCP [Floyd2002]
 - XCP [Katabi2002] and Implementations [USC ISI]
 - FAST TCP[Jin2004]
 - drsTCP[Feng2002]

Summary

- Communications in Lambda-Grids
 - Networks have plentiful bandwidth but limited end-system capacity
 - Endpoint congestion
- Evaluation of Rate-based protocols
 - High performance for point-to-point single or parallel flows
 - Challenging for the case of converging flows
 - GTP outperforms RBUDP and UDT due to its receiver-based schemes
- Remaining challenges
 - End system contention management
 - Interaction with TCP
 - Analytical modeling rate-based control schemes