High Performance Transport for Real-time and Quasi-Realtime **Applications**

John Wrocławski

MIT Computer Science and Artificial Intelligence Laboratory,

jtw@lcs.mit.edu

David Lapsley

MIT Haystack Observatory, USA

dlapsley@haystack.mit.edu

Alan Whitney

MIT Haystack Observatory, USA

awhitney@haystack.mit.edu

http://www.haystack.mit.edu

Outline

- Very Long Baseline Interferometry (VLBI)
 - e-VLBI
 - e-VLBI Data/Transmission requirements
 - e-VLBI Model
 - · present and future
- Experiment Guided Adaptive Endpoint (EGAE)
- EGAE Optimization Algorithm
- Summary

Typical e-VLBI Data Requirements

Description	Geodesy	Astronomy	
Duration(hours)	24/week	Blocks of several contiguous days	
Telescopes	7 (nominal)	Up to 20	
% Observation Time	30-50	50-75	
Data rate(Mbps)	256	1024	
Total data collected (/station/day)	~ 1 TB	~ 7 TB	
Current Turnaround time (days)	14-151	> geodesy	
Tolerable loss (%)	5	5	

Typical e-VLBI Data/Transmission Requirements

Experiment	Length (hours)	Data (GB/day)	Transmission Time (hours) (@30 Mbps)	Transmission Time (hours) (@100 Mbps)	Transmission Time (hours) (@1 Gbps)
Astronomy	24xN	7000	519	156	15.6
Geodesy	24	1000	74.1	22.2	2.22
Intensive	1	40	2.96	0.89	0.089*
T2023	24	543	40.2	12.1	1.21
CRF23	24	489	36.2	10.9	1.09
CRF22	24	443	32.8	9.84	0.98

^{* =} projected based on near-Gbps experiment

Experiment Guided Adaptive Endpoint

- Interfaces VLBI hardware to IP networks, transmits and receives VLBI data
- Uses several techniques to provide efficient, economical transport of data:
 - Multi-dimensional performance optimization
 - Protocols for high speed, quasi-real-time transport
 - "Scavenged" bandwidth
 - Adapts transmission rates to suit network congestion
 - Allows characteristics of adaptive behavior to be determined by high level experimental profile

EGAE Optimization Algorithm

$$\begin{split} \hat{d}(t) &=& \sum_{i \in \{d,s,n\}} \frac{b_i(t)}{r_i(t)} + \frac{b_v(t)r_d(t)}{r_v r_s(t)} \\ \hat{l}(t) &=& l(t) + (r_v - r_d(t))\hat{T}(t) + (r_s(t) - r_n(t))\hat{T}(t) \end{split}$$

where, \hat{d} is the projected remaining transfer delay at time t, $\hat{l}(t)$ is the projected total loss, l(t) is the total loss at time t, $\hat{T}(t)$ is the projected time until completion at time t. Let,

$$\begin{split} B_d(r_s, r_d) &= & \frac{1}{d_{max}} \left[d_{max} - \hat{d}(t) - t \right] \\ &= & \frac{1}{d_{max}} \left[d_{max} - \sum_{i \in \{d, s, n\}} \frac{b_i(t)}{r_i(t)} - \frac{b_v(t) r_d(t)}{r_v r_s(t)} \right] \\ B_l(r_s, r_d) &= & \frac{1}{l_{max}} \left[l_{max} - \hat{l}(t) \right] \\ &= & \frac{1}{l_{max}} \left[l_{max} - l(t) - (r_v - r_d(t)) \hat{T}(t) - (r_s(t) - r_n(t)) \hat{T}(t) \right] \end{split}$$

where $B_d(r_s, r_d)$ is the delay benefit function and $B_l(r_s, r_d)$ is the loss benefit function. Define the overall benefit function, $B(r_s, r_d)$ as:

$$\begin{split} B(r_s,r_d) &=& B_d(r_s,r_d) + B_l(r_s,r_d) \\ &=& \frac{1}{d_{max}} \left[d_{max} - \sum_{i \in \{d,s,n\}} \frac{b_l(t)}{r_l(t)} - \frac{b_v(t)r_d(t)}{r_v r_s(t)} - t \right] \\ &+ \frac{1}{l_{max}} \left[l_{max} - l(t) - (r_v - r_d(t)) \hat{T}(t) - (r_s(t) - r_n(t)) \hat{T}(t) \right] \end{split}$$

EGAE Optimization Goal

Our goal:

$$\max_{\mathbf{r}_{min} \leq \mathbf{r} \leq \mathbf{r}_{max}} B(\mathbf{r})$$

where, $B(\mathbf{r})$ is the overall benefit function, \mathbf{r} is the rate vector, $\mathbf{r_{min}}$, $\mathbf{r_{max}}$ are vectors that bound \mathbf{r} below and above respectively. Subject to the following constraints:

$$\hat{d}(t) + t \le d_{max}$$
$$\hat{l}(t) \le l_{max}$$

EGAE Optimization Solution

Use the gradient algorithm to find the optimal operating point:

$$\mathbf{r}(t+1) = \mathbf{r}(t) + \gamma \nabla B(\mathbf{r}(t))$$

where, $\mathbf{r}(t) = [r_s(t), r_d(t)]$ is the rate vector, γ is the step size, $\nabla B(\mathbf{r}(t))$ is the gradient of B and points in the direction of steepest ascent.

 $\nabla B(\mathbf{r}(t))$ is given by:

$$\nabla B(\mathbf{r}(t)) = \left[\frac{b_v(t)r_d(t)}{d_{max}r_vr_s^2(t)} - \frac{\hat{T}(t)}{l_{max}}, \frac{b_v(t)}{d_{max}r_vr_s(t)} + \frac{\hat{T}(t)}{l_{max}} \right]$$

where, $b_v(t)$ is the amount of data to be transmitted from the telescope, $r_d(t)$ is the current discard buffer transmission rate, r_v is the telescope transmission rate, $r_s(t)$ is the EGAE transmission rate into the network and $\hat{T}(t)$ is the estimated remaining time until completion.

Summary

- e-VLBI:
 - Large, real-time, loss tolerant flows, some delay tolerance
- VSI-E Framework for e-VLBI Data Transfers
- Experiment Guided Adaptive Endpoint
 - VSI-E Interface
 - RTP Transport Proposal
 - EGAE Optimization Algorithm under development

Thank you

David Lapsley dlapsley@haystack.mit.edu