

How Does an XCP Router Compute the Feedback?

Does lying about throughput affect utilization?

No. congestion controller makes the aggregate increase/decrease proportionally to the spare and the queue

Does lying about throughput affect fairness?

Yes. Liar simulates multiple flows \rightarrow gets multiple fair shares

Does lying about RTT affect utilization?

Yes. congestion controller makes decision every avg. RTT The liar can confuse the congestion controller!

Simulated 20 flows lying about RTT:

Does lying about RTT affect fairness?

No. It increases variance in the fair share but does not increase absolute throughput much

b) Can improve robustness to RTT-lies by making decisions every 100 ms rather than every Avg. RTT, but that would

When a flow ignores the feedback, the router tries to balance the utilization given the leftover capacity

With probability *p=0.05* sample the flows Send the flow negative feedback & monitor it for 5 avg. RTTs If the flow doesn't react, punish it

Next with XCP

TeXCP: Using the XCP Framework for Traffic Engineering

TeXCP: Online In-Network Approach for Minimizing Max Utilization

- Multi-paths between ingress-egress pair
 Paths are tunnels pinned using MPLS
- Think of ingress-egress tunnels as flows
- Generalize congestion control
 - □ One path \rightarrow Multi-paths
 - □ 100% utilization \rightarrow Balanced utilization
- Replace congestion header with occasional control packets on the slow path
 - Easy to deploy in router software
 - Doesn't assume XCP

Reaction to Link Failure Abilene Topology & Scaled Traffic Matrix TeXCP **OSPF** Optimal Weight Setting 1.2 1.2 Link Up OSPF Max Util = 73% Link Down Link Up Link Down Link Up Link Up OSPF Max Util = 97% OSPF Max Util = 73% TeXCP Max Util = 68% TeXCP Max Util = 68% TeXCP Max Util = 68% 1 1 Optimal Max Util = 68% 0.8 0.8 Utilization Utilization 0.6 0.6 0.4 0.4 0.2 0.2 0 0 0 200 400 600 800 1000 0 200 400 600 800 1000 Time(sec) Time(sec)

