Cheng Jin

http://netlab.caltech.edu

Brief History of FAST TCP

Congestion control as an optimization
problem

Primal-dual framework to study TCP
congestion control

o Modeling existing TCP implementations
o Theoretical analysis on FAST TCP
o FAST TCP Implememtation

Optimization Model

o Network bandwidth allocation as utility
maximization

o Optimization problem

o Primal-dual components
x(t+1) = F(q(t), x(t)) Source
p(t+1) = G(y(t), p(t)) Link

Use of Queueing Delay in FAST

o Each FAST TCP flow has a target number
of packets to maintain in network
buffers in equilibrium

o0 Queueing delay allows FAST to estimate
the number of packets currently
buffered and estimate its distance from

the target

Solution: estimate target

= =
b

ustment (pkts)

sinclove ad)
f=1 =
= [

=
=)

1 | | | |
-2 -1 i 1 2 3
distance from equilibrium, w- w* (pkts) I 104

FAST and Other DCAs

FAST is an implementation within the
primal-dual framework

Queueing delay is one example of the
price from the network

FAST does not use queueing delay to
predict or avoid packet losses

FAST may use other forms of price in
the future when they become available

Packet Level

Reno ACK: W € W +1/W
AIMD(1, 0.5) Loss:W € W-0.5W

HSTCP ACK:W € W +a(wyw
AIMD(a(w), b(w)) Loss: W € W —b(w) W

STCP ACK: W € W +0.01
MIMD(a, b) Loss: W € W-0.125 W

baseRTT
+ 0
RTT

FAST RIT : W — W-

Architecture

Each component
o designed independently
o upgraded asynchronously

Data Window Burstiness
Control Control Control

TCP Protocol Processing

Known Issues

o Network latency estimation
= route changes, dynamic sharing
= does not upset stability
o Small network buffer
= at least like TCP Reno
= adapt a on slow timescale, but how?
o TCP-friendliness
= friendly at least at small window
= how to dynamically tune friendliness?
Reverse path congestion

Experiments

In-house dummynet testbed
PlanetLab Internet experiments
Internet2 backbone experiments
ns-2 simulations

Dummynet Setup

m @ =

Single bottleneck link, multiple path latencies
Iperf for memory-to-memory transfers
Intra-protocol testings

Dynamic network scenarios

Instrumentation on the sender and the router

What Have We Learnt?

FAST is reasonable under normal
network conditions

Well-known scenarios where FAST
doesn’t perform well

o Network behavior is important
o Dynamic scenarios are important
o Host implementation (Linux) also

important

Hhroughput (Kbps)

a

throughput (Kbps)

throughput (Kbps)

v

W o
sl

throughput (Kbps)

FﬁéT TE%
FHighSpeed TCF
Scalable TCP
TCF Eeno

large windows

H.
H.
Q.
H.
H.
H.
Q.
H.
Q.

1 ! !

18@ 2@aa 266 408 S8 6B FA0 266
Throughput (Mbpsi

Dummynet: cap = 800Mbps; delay = 50-200ms; #flows = 1-14; 29 expts

Stability

—

stable under
diverse scenarios

FAST TCP
HighSpeed TCP
Scalable TCP
TQP Reno

L v I I N - R iy Bt B i B 7
m W = W 4 0 O

1
@.4 B.&
Stability

Dummynet: cap = 800Mbps; delay = 50-200ms; #flows = 1-14; 29 expts

Fairness

HﬁST TEH
HighSpeed TCF
Scalable TCP

TCP Reno

& Reno and HSTCP
have similar fairness

A.4 B.6

Fairness

Dummynet: cap = 800Mbps; delay = 50-200ms; #flows = 1-14; 29 expts

1500 - queue 1500
| £
g g ‘
500 - 500 -
0 o0
] 05 1 15 2
s ROO 0 g xd” ‘ ‘ ; ;
A %A,
3ar o3 -
NI £. Linux
H H
8 . . . , 3
o 05 1 15 2 o 05 1 15 2
7 Py — z L P " "
I ‘ ‘ = g
40 40 / |
H H
£ throughput £
g7 \ gzo— I
s L L L L £ L L L L
0 05 1 15 2 0 05 1 15 2
sec sec
i‘SDﬂ i1500
“ 500 < s00
0 o
o 05 1 15 2 o a5 1 15 2
x10° x10°
£ ol
I L STCP
£- gl
§1 §1—
o 0‘5 1‘ 1‘5 2‘
fu fo
) s |
i Fe
= =
£ £))

FAST TCP v.s. Buffer Size

Sanjay Hegde & David Wei

10000 durmmy?

5000 ” ‘
...

i i L 0% = | " et i e
q(WD‘ 1000 2000 3000 4000 5000 GOO0 FOOD 00D 4000 WO 00 000 40 500 600 7000
3r |

cwndipkt)

\adev,

ssthreshipkt)

avy

1 I L J
D%Ds 00 o0 3 40m W0 g0 w0 noms Mo A0 W0 40 S0 B0 T 800
g

e ——

bazeRTTUS)

L L L L L
1000 2000 3000 4000 5000 6000 7000 8000

0 ! ! ! I I ! I I
0 105 1000 2000 3000 4000 S0O0 GOOO FODO G000
4

I

w l‘;ll J-L[‘] i T rcn i g :
D[” “l‘ ﬁ‘ﬁ | \”H“T\\m e T H! . | " w0 30 .Anao lsuen’ P .xnnu

1000 2000 3000 4000 S000 G000 OO0 GOOD 000 sec
380

throughput (pkt/sec)

Backward Queueing Delay I

Bartek Wydrowski
o Use timestamp option on both sender
and receiver
o Precision limited by sender clock

o Not requiring synchronization, same-
resolution clocks, or receiver
modification

Backward Queueing Delay II

Bartek Wydrowski

Throughput of SRC1 (1st forward source)
T T T T

*‘”‘”MNWWW }

/

BQD off

\ liaaca i

1fwflow 5 i flows 2 fw flows
1 Pk ﬂOW‘ 1 bk|ﬂ0WS ‘ 2 ‘bk ﬂOV\{S

5 10 15 20 25 30
Time (sec)

PlanetLab Internet Experiment

Jayaraman & WydrowskKi

Throughput v.s. loss and delay
qualitatively similar results

FAST saw higher loss due
to large alpha value

Linux Related Issues

o Complicated state transition
= Linux TCP kernel documentation
o Netdev implementation and NAPI
= frequent delays between dev and TCP layers
o Linux loss recovery
too many acks during fast recovery
high CPU overhead per SACK
very long recovery times
Scalable TCP and H-TCP offer enhancements

Acknowledgments

Caltech

= Bunn, Choe, Doyle, Newman, Ravot, Singh, J. Wang
UCLA

= Paganini, Z. Wang
CERN

= Martin

SLAC

= Cottrell

Internet2

= Almes, Shalunov
Cisco

= Aiken, Doraiswami, Yip
Level(3)

s Fernes

LANL

[Wu

http://netlab.caltech.edu/FAST

o FAST TCP: motivation, architecture,
algorithms, performance.

o Code reorganization, ready for integration
with web100.

o B-release: summer 2004

Implementation Strategy

o Common flow level dynamics

window __ |control| |flow level
adjustment gain goal

o Small adjustment when close, large far away
= Need to estimate how far current state is from target
= Scalable

O Queueini; delay easier to estimate compared with
extremely small loss probability

TCP/AQM

AQM:
DropTail
RED
REM/PI
AVQ

o Congestion control has two components
= TCP: adjusts rate according to congestion
= AQM: feeds back congestion based on utilization

o Distributed feed-back system

= equilibrium and stability properties determine
system performance

Network Model

y
R(s) —l

Network

le mo b

Components: TCP and AQM algorithms, and
routing matrices

Each TCP source sees an aggregate price, g
Each link sees an aggregate incoming rate

FAST TCP

o Flow level

= Understood and Synthesized first
o Packet level

= Designed and implemented later

o Design flow level equilibrium & stability
o Implement flow level goals at packet level

