
1

Cheng Jin

http://netlab.caltech.edu

FAST TCP:
design, implementation, experiments

Brief History of FAST TCP

 Congestion control as an optimization
problem

 Primal-dual framework to study TCP
congestion control

 Modeling existing TCP implementations
 Theoretical analysis on FAST TCP
 FAST TCP Implememtation

2

Optimization Model

 Network bandwidth allocation as utility
maximization

 Optimization problem

 Primal-dual components
x(t+1) = F(q(t), x(t)) Source
p(t+1) = G(y(t), p(t)) Link

Llcy

xU

ll

s
ss

x s

∈∀≤

∑
≥

 , subject to

)(max
0

Use of Queueing Delay in FAST

 Each FAST TCP flow has a target number
of packets to maintain in network
buffers in equilibrium

 Queueing delay allows FAST to estimate
the number of packets currently
buffered and estimate its distance from
the target

3

Solution: estimate target

 FAST

Scalable to any w*

Slow
Start

FAST
Conv

Equil

Loss
Rec

FAST and Other DCAs

 FAST is an implementation within the
primal-dual framework

 Queueing delay is one example of the
price from the network

 FAST does not use queueing delay to
predict or avoid packet losses

 FAST may use other forms of price in
the future when they become available

4

Packet Level

 ACK: W  W + 1/W
 Loss: W  W – 0.5 W

 Reno
AIMD(1, 0.5)

 ACK: W  W + a(w)/W
Loss: W  W – b(w) W

 HSTCP
AIMD(a(w), b(w))

 ACK: W  W + 0.01
Loss: W  W – 0.125 W

 STCP
MIMD(a, b)

α
RTT

baseRTT
 W W :RTT +⋅← FAST

Architecture

Each component
 designed independently
 upgraded asynchronously

 Data
Control

Window
Control

Burstiness
 Control

Estimation

TCP Protocol Processing

5

Known Issues

 Network latency estimation
 route changes, dynamic sharing
 does not upset stability

 Small network buffer
 at least like TCP Reno
 adapt α on slow timescale, but how?

 TCP-friendliness
 friendly at least at small window
 how to dynamically tune friendliness?

 Reverse path congestion

Experiments

 In-house dummynet testbed
 PlanetLab Internet experiments
 Internet2 backbone experiments
 ns-2 simulations

6

Dummynet Setup

 Single bottleneck link, multiple path latencies
 Iperf for memory-to-memory transfers
 Intra-protocol testings
 Dynamic network scenarios
 Instrumentation on the sender and the router

What Have We Learnt?

 FAST is reasonable under normal
network conditions

 Well-known scenarios where FAST
doesn’t perform well

 Network behavior is important
 Dynamic scenarios are important
 Host implementation (Linux) also

important

7

Dynamic sharing: 3 flowsFAST Linux

HSTCP STCP

Steady throughput

Aggregate Throughput

Dummynet: cap = 800Mbps; delay = 50-200ms; #flows = 1-14; 29 expts

large windows

Ideal CDF

8

Stability

Dummynet: cap = 800Mbps; delay = 50-200ms; #flows = 1-14; 29 expts

stable under
diverse scenarios

Fairness

Dummynet: cap = 800Mbps; delay = 50-200ms; #flows = 1-14; 29 expts

Reno and HSTCP
have similar fairness

9

FAST Linux

throughput

loss

queue

STCPHSTCP

30min

Room for mice !

HSTCP

FAST TCP v.s. Buffer Size
Sanjay Hegde & David Wei

10

Backward Queueing Delay I
Bartek Wydrowski

 Use timestamp option on both sender
and receiver

 Precision limited by sender clock
 Not requiring synchronization, same-

resolution clocks, or receiver
modification

Backward Queueing Delay II
Bartek Wydrowski

1 fw flow
1 bk flow

2 fw flows
1 bk flows

2 fw flows
2 bk flows

11

PlanetLab Internet Experiment

Throughput v.s. loss and delay
qualitatively similar results

FAST saw higher loss due
to large alpha value

Jayaraman & Wydrowski

Linux Related Issues

 Complicated state transition
 Linux TCP kernel documentation

 Netdev implementation and NAPI
 frequent delays between dev and TCP layers

 Linux loss recovery
 too many acks during fast recovery
 high CPU overhead per SACK
 very long recovery times
 Scalable TCP and H-TCP offer enhancements

12

Acknowledgments
 Caltech

 Bunn, Choe, Doyle, Newman, Ravot, Singh, J. Wang
 UCLA

 Paganini, Z. Wang
 CERN

 Martin
 SLAC

 Cottrell
 Internet2

 Almes, Shalunov
 Cisco

 Aiken, Doraiswami, Yip
 Level(3)

 Fernes
 LANL

 Wu

 FAST TCP: motivation, architecture,
algorithms, performance.
IEEE Infocom 2004

 Code reorganization, ready for integration
with web100.

 β-release: summer 2004
Inquiry: fast-support@cs.caltech.edu

http://netlab.caltech.edu/FAST

13

 The End

Implementation Strategy

 Common flow level dynamics









−⋅=

)(

)(
1)()(

' tU

tq
ttw

i

i
i κ

window
adjustment

control
gain

flow level
goal=

 Small adjustment when close, large far away
 Need to estimate how far current state is from tarqet
 Scalable

 Queueing delay easier to estimate compared with
extremely small loss probability

14

TCP/AQM

 Congestion control has two components
 TCP: adjusts rate according to congestion
 AQM: feeds back congestion based on utilization

 Distributed feed-back system
 equilibrium and stability properties determine

system performance

pl(t)

xi(t)TCP:
 Reno
 Vegas
 FAST

AQM:
 DropTail
 RED
 REM/PI
 AVQ

Network Model

 Components: TCP and AQM algorithms, and
routing matrices

 Each TCP source sees an aggregate price, q
 Each link sees an aggregate incoming rate

x y

F1

FN

G1

GL

Rf(s)

Rb(s)

TCP Network AQM

q p

15

FAST TCP

 Flow level
 Understood and Synthesized first

 Packet level
 Designed and implemented later

 Design flow level equilibrium & stability
 Implement flow level goals at packet level

