

Experimental Measurements of the eXplicit Control Protocol (XCP)

Aaron Falk, Ted Faber, Eric Coe, Aman Kapoor, & Bob Braden

USC Information Sciences Institute

Outline

- What is XCP?
- What is ISI doing?
- Implementation Details
- Experimental Results
- Next steps

XCP in a Nutshell

- XCP is a new congestion control protocol developed by Dina Katabi
- End-systems tell routers what throughput they'd like to send at
- Routers make a per-flow allocation, inspect incoming packets, and reduce the throughput request to match the allocation (if necessary)

The Congestion Header

What's So Cool About XCP?

- In simulation...
 - XCP fills the bottleneck pipe much more rapidly than Van Jacobson congestion control (VJCC)
 - XCP rapidly converges to fair allocation of bottleneck bandwidth
 - XCP gets better bottleneck link utilization than VJCC for large BDP flows

What's So Cool About XCP?

- XCP maintains tiny queues
- XCP is more stable than VJCC at long RTTs
- Future/other functionality:
 - Unfair allocations (e.g., QoS, low priority)
 - CC for other protocols (e.g., realtime)

ISI's XCP Development

- Our objective: Take XCP from theory to reality
- To get there:
 - Build & test a kernel implementation
 - Evaluate the cooler aspects:
 - Rapid convergence
 - Good performance over large BDP, RTT
 - Write a protocol specification, mature the protocol
 - Move ns-2 simulation code into distribution
 - Work with the community (researchers, vendors, operators, IETF)
 - Develop deployment strategies

Our XCP Prototype

- Congestion header is placed between TCP and IP (layer 3.5)
- Application opens socket to protocol 'XCP' to get TCP using XCP congestion control
- Router operates XCP on output queue

Implementation Details

- End System
 - FreeBSD ver. 4.8 kernel implementation
 - XCP code modifies TCP cwnd value
 - (using cwnd in header now, switching to throughput soon)
- Router
 - FreeBSD ver. 4.8 kernel implementation
 - Dummynet used to provide separate queues for TCP and XCP packets
 - All integer math (requires lots of scaling)
 - Many router parameters stashed into debug extensions to congestion header

Testbed Topology

- PCs: 2.8 GHz, dual PCI-X, FreeBSD4.8, 512MB
- Dummynet 100ms delay on ACK flow
- Router buffering: 5kpkts in, 20kpkts out

Experimental Results

XCP vs.TCP startup behavior

Four XCP Flows Fairly Share Bottleneck Throughput

XCP Throughput Compared to Simulation Results

XCP Measured

XCP Simulated

XCP Throughput Compared to TCP

XCP Measured

TCP Measured

Link Utilization Is Maintained As New Flows Arrive

A. Falk - USC/ISI © 2004

Link Utilization Compared to Simulation Results

XCP Measured

XCP Simulated

Link Utilization Compared to TCP

XCP Measured

TCP Measured

Queues Stay Small As New Flows Arrive

XCP Measured

XCP Simulated

XCP is Stable as RTT Increases...

TCP Doesn't Do As Well

Methodology

- Utilization & Throughput
 - tcpdump at receiver on all packets
 - Sum packet size over 100ms intervals
- Throughput vs. RTT
 - Sum packet size over interval set to current RTT
 - Hold RTT for 10 sec

Next Steps

- Continue evaluating performance, stability, and fairness under more widely varying conditions
 - Mixing flow RTT, bandwidth
 - Networks with multiple routers
 - Scenarios with link errors, moving bottlenecks

Next Steps

- Examine heterogeneous networks
 - XCP & TCP co-existance
 - Performance with non-XCP routers
 - Performance with layer 2 queues

Next Steps

- Develop a more general router model
- Resolve some protocol issues
 - IPsec, MPLS, header formats
- Experiment with deployment scenarios
 - E.g., running XCP in a cloud

Summary

- Early measurements match simulated results
- XCP fairly allocates bottleneck bandwidth to multiple flows
- XCP dynamically reallocates bottleneck bandwidth as flows arrive and depart
- XCP remains stable as RTT varies by 4000%

People

- Aaron Falk, ISI, project lead
- Ted Faber, ISI
- Bob Braden, ISI
- Eric Coe, student
- Aman Kapoor, student
- Dina Katabi, MIT
- John Wrocławski, MIT

XCP Project Info

- http://www.isi.edu/isi-xcp
 - source code
 - draft specification
 - mailing list information

Backup Slides

XCP Feedback Loop

XCP Feedback Loop

Router Queues Remain Stable When Capacity is Over-Estimated

Router capacity set to 98.5Mbps

Router capacity set to 100Mbps