Evaluation of Advanced TCP stacks on Fast Long-Distance production Networks

Prepared by Les Cottrell & Hadrien Bullot, Richard Hughes-Jones EPFL, SLAC and Manchester University for the Protocols for Fast Long Distance Networks, ANL February, 2004

www.slac.stanford.edu/grp/scs/net/talk03/pfld-feb04d.ppt

Partially funded by DOE/MICS Field Work Proposal on Internet End-to-end Performance Monitoring (IEPM), also supported by IUPAP and UK e-Science via PPARC

Project goals

- Test new advanced TCP stacks, see how they perform on short and long-distance real production WAN links
- Compare & contrast: ease of configuration, throughput, convergence, fairness, stability etc.
- For different RTTs, windows, txqueuelen
- Recommend "optimum" stacks for data intensive science: (BaBar) transfers using bbftp, bbcp, GridFTP
- Validate simulator & emulator findings & provide feedback

Protocol selection

- Focus on TCP only
 - No Rate based transport protocols (e.g. SABUL, UDT, RBUDP) at the moment
 - No iSCSI or FC over IP
- Sender mods only, HENP model is few big senders, lots of smaller receivers
 - Simplifies deployment, only a few hosts at a few sending sites
 - No DRS
- Runs made on production networks so:
 - No router mods (XCP/ECN), no jumbos,

3

Protocols Evaluated

- Linux 2.4 New Reno with SACK: single (Reno) and parallel streams (P-TCP)
- Scalable TCP (S-TCP)
- Fast TCP
- HighSpeed TCP (HS-TCP)
- HighSpeed TCP Low Priority (HSTCP-LP)
- Binary Increase Control TCP (Bic-TCP)
- Hamilton TCP (H-TCP)

Networks

- 3 main network paths
 - Short distance:SLAC-Caltech (RTT~10ms)
 - Middle distance:U. Florida (UFI) & DataTAG Chicago(RTT~70ms)
 - Long distance:CERN & University of Manchester (RTT ~ 170ms)
 - Tests during nights and weekends to avoid unacceptable impacts on production traffic

7

Windows

- Set large maximum windows (typically 32MB) on all hosts
- Used 3 different windows with iperf:
 - Small window size, factor 2-4 below optimal
 - Roughly optimal window size (~BDP)
 - Oversized window

RTT

- Only P-TCP appears to dramatically affect the RTT
 - E.g. increases by RTT by 200ms (factor 20 for short distances)
 - Implication: P-TCP would impact apps. like Voice/IP

txqueuelen

- Regulates the size of the queue between the IP layer and the Ethernet layer
- May increase the throughput if we find optimal values
- But may increase duplicate ACKs (Y. T Li)

Txqueuelen vs TCP for UFI 4MB window	Reno 16	S-TCP	Fast	HS	Bic	Н ТСР	HS LP	avg
tqueuelen=100	428	301	340	431	387	348	383	374
tqueuelen=2000	434	437	400	224	396	310	380	368.71
tqueuelen=10000	429	281	385	243	407	337	386	352.57
Avg	430.33	339.67	375	299.33	396.67	331.67	383	

- All stacks except S-TCP use txqueuelen=100 as default
- S-TCP uses txqueuelen=2000 by default
- Tests showed these were reasonable choices

	Throughput (Mbps) Windows too small (worse for longer distant										
Throughput SLAC to Remote	Reno 16	Sc	Bic	Fast	HS LP	H	HS	Reno 1	Avg		
Caltech 256 KB	▲ 395	226	238	233	236	233	225	239	253		
UFI 1 MB	451	110	133	136	141	140	136	129	172		
Caltech 512 KB	413	377	372	408	374	339	307	362	369		
UFI 4 MB	428	437	387	340	383	348	431	294	381		
Caltech 1 MB	434	429	382	413	381	374	284	374	384		
UFI 8 MB	442	383	404	348	357	351	387	≠ 278	369		
Average	427	327	319	313	312	298	295	279	321		
Rank	1	2	2	2	2//	4	4	4			
Poor performance Reasonable performance Better performance Best performance						Reno with 1 stream has problems on Medium distance link (70ms) Window size?					

Sinusoidal UDP

- UDP does not back off in face of congestion, it has a "stiff" behavior
- We modified iperf to allow it to create UDP traffic with a sinusoidal time behavior, following an idea from Tom Hacker
 - See how TCP responds to varying cross-traffic
- Used 2 periods of 30 and 60 seconds and amplitude varying from 20 to 80 Mbps
- Sent from 2nd sending host to 2nd receiving host while sending TCP from 1st sending host to 1st receiving host
- As long as the window size was large enough all protocols converged quickly and maintain a roughly constant aggregate throughput
- Especially for P-TCP & Bic-TCP

Cross TCP Traffic

- · Important to understand how fair a protocol is
- For one protocol competing against the same protocol (intraprotocol) we define the fairness for a single bottleneck as:

$$F = \frac{(\sum_{i=1}^{n} \overline{x}_i)^2}{n \sum_{i=1}^{n} \overline{x}_i^2}$$

- All protocols have good intra-protocol Fairness (F>0.98)
- Except HS-TCP (F<0.94) when the window size > optimal

Fairness (F)								
Avg Fairness from								
SLAC to UFI. Cross	Reno							
traffic=>	TCP	S-	Fast	HS-	Bic-	Н	HSTCP	-
Source	16	TCP	TCP	TCP	TCP	TCP	LP	Avg
P-TCP	1.0	0.9	2 0.8	90.9	0 0.9	5 0.9	4 0.6	90.9
S-TCP	0.9	2 1.0	0 0.8	70.9	0 0.9	1 0.9	2 0.7	80.9
Fast TCP	0.8	9 0.8	7 1.0	00.9	2 0.9	3 0.9	9 0.7	80.9
HS-TCP	0.9	0 0.9	0 0.9	20.9	7 0.9	5 0.9	4 0.9	50.9
Bic-TCP	0.9	5 0.9	1 0.9	30.9	5 1.0	0 0.9	9 0.9	30.9
H-TCP	0.9	4 0.9	2 0.9	90.9	4 0.9	9 1.0	0.9	50.9
HSTCP-LP	0.6	9 0.7	8 0.7	80.9	5 0.9	3 0.9	5 1.0	0.8
Marat Is a construction of the first	1-2-1	22	200	<u> </u>	2.2.1	<u> </u>		7 0 0

- Most have good intra-protocol fairness (diagonal elements), except HS-TCP
- Worse for larger RTT (Caltech F~0.999+-0.004, U Florida F~0.995+-0.14, Manchester F~0.95+-0.05)
- Inter protocol Bic & H appear more fair against others
- Worst fairness are: P-TCP, S-TCP, Fast, HSTCP-LP (backoff early)
- But cannot tell who is aggressive and who is timid

