
Testing fast TCP over Abilene

Stanislav Shalunov 〈shalunov@internet2.edu〉

2nd PFLDnet Workshop, Argonne, February 2004

Abstract

A 2.5Gb/s production Abilene circuit to SoX GigaPoP is

congested by fast flows for 30 minutes using a novel test

tool, without adverse effects on production or other test

traffic. The topic of internal queuing in Linux is touched.

1 Introduction

Fast TCP [5] [2] is an advanced version of TCP con-
gestion control that uses delay, in addition to loss,
as its source of knowledge about the state of conges-
tion at the bottleneck, and, therefore, has a potential
for using the network bottleneck link capacity fully
without causing the output queue on the bottleneck
interface to grow significantly. The purposes of this
experiment were:

1. to evaluate the safety of deploying fast TCP, in
its current version, on Abilene [1] in particular
and on Internet2 networks in general,

2. to understand better the interaction of fast
TCP traffic with conventional traffic at a high-
speed congested bottleneck,

3. to learn more about the behavior of the current
fast TCP implementation on a production net-
work and about the degree to which such behav-
ior agrees with the theoretical model, and

4. to demonstrate that high-speed (network-
saturating) traffic flows that do not adversely af-
fect production traffic to a significant extent are
possible today without the need of any quality-
of-service techniques or active queue manage-
ment.

The tests appear to have contributed towards the ful-
fillment of these goals: fast TCP, even if its behav-
ior does not currently, due to implementation issues,
agree completely with the theoretical model, appears
to be a safe tool for obtaining high speeds for data
transfers on production networks; one can further
hope that as the implementation is improved, the
tool will become even more efficient and will affect
the queue depth at the bottleneck to an even lesser
extent.

2 Test Setup and Configuration

A series of progressively longer tests was conducted
with an increasing number of flows; the primary goal
of the initial tests was to convince the network oper-
ators involved that the transport protocol possesses
the requisite congestion avoidance properties and,
therefore, a significant adverse effect on production
traffic is unlikely; a secondary goal was to gain more
experience with fast TCP in general and the test
configuration in particular so that extraordinary re-
sults could be recognized as such. Only the last
experiment is described here. The previous experi-
ments [7] [8] provided generally similar results.

The tests used eight machines, all connected via
Gigabit Ethernet, to produce four TCP flows. Two
flows were fast TCP; they added enough traffic to
saturate a bottleneck OC-48 link with a capacity of
2.5Gb/s. One flow was conventional FreeBSD Reno
TCP; this flow was CPU-limited at the sender and
was used to evaluate the impact of fast TCP flows on
production traffic. One flow was conventional Linux
Reno TCP; this flow was congestion-limited at its
source (Gigabit Ethernet network interface card) and

1

was used to further understand the interaction be-
tween fast TCP and conventional TCP.

The machines were located at five sites throughout
the continental United States:

SoX Southern Crossroads GigaPoP in Atlanta,

PNW Pacific Northwest GigaPoP in Seattle,

PSC Pittsburgh Supercomputing Center in Pitts-
burgh,

NC-ITEC North Carolina Internet2 Technology
Evaluation Center in Raleigh, and

STTL The measurement rack in a Qwest PoP next
to the Abilene core router in Seattle.

The eight machines were as follows:

fast1 a Linux 2.4.20 machine with fast TCP kernel
patches, at SoX,

fast2 a Linux 2.4.20 machine with fast TCP kernel
patches, at SoX,

fast3 a Linux 2.4.20 machine with conventional
TCP, at SoX,

fast4 a Linux 2.4.20 machine with fast TCP kernel
patches, at NC-ITEC,

fast5 a Linux 2.4.20 machine with fast TCP kernel
patches, at PNW,

fast6 a Linux 2.4.20 machine with conventional
TCP, at PSC,

gigatcp1 a FreeBSD 4.3-release machine with
conventional TCP, at SoX, and

nms1-sttl a FreeBSD 4.6-release machine with
conventional TCP, at STTL.

The machines fast3 and fast6 ran Linux on hardware
identical to that of the other machines with “fast”
in their names; fast TCP patches were installed on
these machines, but were not active during the test
and thus conventional Linux TCP stack was used.
The fast1, fast2, and fast3 machines at SoX were con-
nected to different multimode fiber Gigabit Ethernet

Supermicro SYS-6013P-8 barebone system
Motherboard X5DPR-8G2; Intel E7501 chipset
Dual 2.66 GHz Xeon with FSB at 522 MHz
2 GB of DDR Kingston ECC memory
1 64-bit, 133MHz PCI-X (full length)
1 64-bit, 66MHz PCI (low profile)
Intel 82546EB 2-port Gigabit Ethernet card
Adaptec AIC-7902 dual channel Ultra320 SCSI
2015S Zero-channel 36 GB IBM U160 Hard disk
1 U Rackmount with 400 W power supply
SysKonnect Gigabit Ethernet (multi-mode, 1-port)

Figure 1: Hardware specification of fast TCP ma-
chines.

SuperMicro 370DE6 Motherboard
Two 256 MB ECC registered DIMMs
Two IBM 18.2 GB Ultra160 drives
Two Intel Pentium III/1000 (133 MHz FSB)
SuperMicro SC760 Chassis
3Com 3c985B-SX Gigabit Ethernet

Figure 2: Hardware specification of the gigatcp1 ma-
chine.

ports on a Juniper M-40 router with a 10Gb/s con-
nection to the SoX border router (a Juniper M-40
as well). The gigatcp1 machine was connected to a
Summit 7i switch with a connection to the SoX bor-
der router. The fast4 machine was, at the time of the
test, connected to the NC-ITEC border router (Cisco
GSR) with an Engine 0 Gigabit Ethernet card (it was
later moved behind a Gigabit Ethernet switch). The
fast5 machine is connected, via PNW Gigabit Ether-
net infrastructure, to the two PNW border routers.
The nms1-sttl machine has a direct multimode Giga-
bit Ethernet connection to the Abilene core router,
a Juniper T-640, in Seattle. The hardware specifica-
tion of the fast machines is described in Fig. 1; for
gigatcp1, this information can be found in Fig. 2; for
nms1-sttl, on Fig. 3.

The four paths for test flows were as follows:

path1 nms1-sttl → gigatcp1 (stock FreeBSD Reno),

2

Intel SCB2 motherboard; 512 kB L2 cache
Two Pentium III 1.263GHz; 133 MHz FSB
Two 512 MB ECC registered RAM
Two Seagate 18 GB SCSI (ST318406LC)
SysConnect Gigabit Ethernet SK-9843 SX

Figure 3: Hardware specification of the nms1-sttl ma-
chine.

path2 fast4 → fast1 (Linux with fast patches),

path3 fast5 → fast2 (Linux with fast patches),

path4 fast6 → fast3 (stock Linux Reno).

If these paths are considered individually, each has a
bottleneck of 1 Gb/s (in the sender network interface
card, with an identical bottleneck before the receiver
network interface card). Each of these paths passes
through the OC-48 link from the Abilene core node
in Atlanta (ATLA) to the SoX border router. The
flows are thus capable of saturating that link with
test traffic. Behind that link are the networks of ap-
proximately 40 institutions [9].

3 Test Tool Description

A custom tool was used to conduct measurements of
throughput and delay.

3.1 Rationale for a Custom Tool

Since fast TCP to a significant extent relies on
round-trip delay measurements to determine its con-
gestion window and, thus, sending rate, it is desir-
able to measure both throughput and delay during
the tests concurrently.

One approach to measuring delay would be to use a
tool such as ping to send ICMP messages to measure
the RTT; the disadvantages of such approach would
include:

1. poor suitability of ping for sending high-rate test
flows, and therefore, lower quantity of data,

2. the necessity to correlate delay data obtained
with ping with throughput data in the face of
ping typically sending packets a little slower
(by an amount that depends on load) than re-
quested,

3. ICMP packets receiving different treatment in
the hosts, and

4. the potential for ICMP packets to receive differ-
ent treatment in the network.

Another approach would be to capture the TCP
test packets and then use the information from TCP
timestamp option to determine delay; this would have
required higher disk throughput than available and
would use CPU cycles in a way that could alter the
test.

Yet another approach would be to modify the ker-
nel to periodically output the delay information it
already has (for fast TCP). This is desirable, and
was, in fact, originally done in fast TCP. However,
conventional TCP senders do not output delay data
and further, even for fast TCP senders, since it is
the fast TCP implementation that is being tested, it
is advantageous to have a method of obtaining delay
data that does not involve fast TCP code.

Since none of these approaches serves the needs of
the test completely, and I could not find an already-
existing network measurement tool that would mea-
sure delay in addition to throughput, a custom tool
was developed for this test.

3.2 Custom Test Tool Design

The design criteria for the tool were as follows:

1. ability to conduct TCP throughput measure-
ments,

2. ability to concurrently conduct delay measure-
ments on the same packets,

3. portability and simplicity,

4. client/server architecture with a traditional unix
dæmon running in the background,

3

5. machine-readable output suitable for plotting,
and

6. ability to request given values for TCP window
size and I/O block size from the client.

Criterion 3 suggests avoiding kernel modification;
since Berkeley socket interface does not provide ac-
cess to any timing information, it becomes necessary
to embed such information in the data stream itself.
The server listens to connections on a fixed TCP port
number, and, in the traditional unix manner, forks
a child to handle each connection, during which one
testing session takes place. A testing session consists
of an initial exchange of messages that configure the
session and of the actual test data. The initial ex-
change of configuration information consists of the
following steps:

1. the server prints a banner that identifies the pro-
tocol and protocol version and notifies the client
whether the session is welcome,

2. provided that the session is welcome, the client
sends a session proposal that specifies the re-
quested TCP window size and I/O block size,

3. the server sends a session response that specifies
that TCP window size and the I/O block size
that would actually be used (a server tries to
honor the request if possible, but might modify
the values if, e.g., one of the requested values is
too large for this server).

Once this initial exchange is over, the client sends
zero or more blocks of test data. Upon receipt of each
block, the server sends back the first 16 bytes of the
block. In principle, these 16-byte “block headers” can
be used arbitrarily by the client; in the current imple-
mentation, four bytes are used to embed a timestamp
obtained prior to sending the block while the rest of
the space is unused. The timestamp, echoed back
by the server, allows the client to learn the round-
trip time of the connection. It is believed that in
most TCP implementations the additional 16 bytes
of payload sent by the server in response to each
block will not cause generation of an extra packet
but will instead be tacked onto an outgoing TCP

ACK packet; for the TCP implementations that were
used in this experiment this conjecture was verified
by packet capture. The delay measurement, thus, has
a relatively low overhead: two calls to gettimeofday
system call per block size. For fast networks and rea-
sonable block sizes and in the absence of TCP time-
outs, this round-trip latency measurement method-
ology therefore promises reasonably accurate results.
The choice of a block size is governed by the following
considerations: on the one hand, a smaller block size
results in a larger overhead, both in gettimeofday
system calls and in write system calls; on the other
hand, a larger block size results in larger serializa-
tion delay, thus skewing the measurement results to-
wards larger numbers. In no case should the block
size be smaller than the TCP maximum segment size;
lower overhead and better performance is promised
by page-aligned blocks; the reasonable range of block
sizes appears to be between 8192 and 65536 bytes.
Maximum value for the TCP window size and for the
I/O block size on the server and desired values for
these quantities on the client are configurable with
command-line options.

This small tool (less than 1000 lines of code in ver-
sion 0.2), and its source code, is made publicly avail-
able [6] under a BSD-style license in the hope that
others might find it useful for their network testing
needs. The exact protocol used in the measurements
is specified in a separate file in the distribution tar-
ball.

4 Test Execution

The tests were performed on November 11, 2003 be-
tween 2am and 6am Eastern Time (the local time-
zone for the bottleneck link). The choice of time was
dictated by the desire to shield daytime production
users from any potential adverse effects of the exper-
iment. It should be noted that even during the test
window, in excess of 200Mb/s of production traffic
was transported by the bottleneck link. The com-
mand line used on the clients (senders) was “i2perf
-l65536 -w4194304 -i1 -t〈duration〉 〈server ip〉”;
this requests a TCP window size of 4 MB and I/O
block size of 64 kB.

4

Path Mb/s min rtt avg rtt max rtt
path1 286.100 58.751 61.419 1868.287
path2 938.460 44.250 62.850 802.687
path3 650.589 59.378 100.497 1600.684
path4 602.295 46.129 91.357 851.856

Table 1: Overall baseline session results (RTT is in
units of ms).

Path Mb/s min rtt avg rtt max rtt
path1 280.411 58.643 61.143 1111.416
path2 747.636 25.068 77.155 1090.875
path3 574.248 58.788 111.707 3604.343
path4 577.297 50.610 96.492 957.372

Table 2: Overall concurrent session results (RTT is
in units of ms).

Initially, four 15-minute baseline tests were con-
ducted, one for each path, with no competing test
traffic (but against production traffic background).
These tests verified that, on each Linux path TCP
was capable of performing well and getting a signifi-
cant fraction of 1 Gb/s and, on the FreeBSD path ob-
tained throughput and delay against which to com-
pare throughput and delay numbers obtained later
while running with a congested path.

The baseline tests were followed by the experi-
ment where four flows were run concurrently, with
15-minute staggered start (first the flow on path1
was started, 15 minutes later—the flow on path2,
etc.). The flows on the Linux paths (path2, path3,
and path4) ran for one hour, while the flow on the
FreeBSD path (path1) ran for two hours to com-
pletely cover all the other tests.

5 Test Results

The overall session results for the baseline tests and
the concurrent test are presented in tables 1 and 2,
respectively. As can be seen, during the concurrent
test, the throughput on path2 and path3 (the fast
TCP paths) has decreased significantly, while the de-

crease on path1 and path4 (the conventional TCP
paths) has not been significant. In other words, when
a bottleneck was congested by a mixture of fast and
Reno TCP flows, the bulk of the penalty associated
with congestion went to the fast flows; this is to
be expected: as the output queue on the bottleneck
network interface starts to build up1, the fast flows
should sense the onset of congestion based on the
increase in round-trip delay and scale back their con-
gestion window size, while the Reno flows, seeing no
losses and, hence, unaware of the fact that the bot-
tleneck is running at full utilization, would continue
sending without halving their congestion window (it
should be noted that since the delay at the bottleneck
increases by a few milliseconds, the Reno flows would
obtain somewhat lower throughput for any given win-
dow size; this is exactly what we observe2).

The various plots of throughput and round-trip
time obtained in user space are produced with the
aid of the custom tool discussed above. The report-
ing interval was set to 1 second; the throughput is
thus 1-second average, while the minimum and aver-
age RTT are taken from the 1-second sample. The
plots of RTT for path2 and path3 obtained in ker-
nel space are taken from the periodic reports about
connection progress that fast TCP outputs to sys-
log; these are the internal kernel state parameters:
for the version of fast TCP used in this experiment,
the base RTT is the minimum RTT observed since
connection start, while the average RTT is an expo-
nentially decaying average. Note that the minima
and the averages obtained in user space and in kernel
space are produced using different algorithms3 and,

1The bottleneck interface in question was configured with
drop-tail queuing discipline and the amount of buffer space on
it was quite significant: four identical OC-48 interfaces share
about 8 seconds worth of buffer space between them and, since
there was no congestion on the other three interfaces during
the experiment, the delay would need to increase to 8 seconds
before router drops would occur. The delay never increased
this much during this experiment.

2It is notable that, while the flow on path1 is limited by the
CPU on its FreeBSD sender, it still experiences corresponding
changes in throughput with changes in delay.

3The user space measurements use averaging over a longer
period of time, and the average is not weighted. But more
importantly, not only the samples of timestamps account for
different time intervals, the measures are of different quanti-

5

 0

 200

 400

 600

 800

 1000

 0 100 200 300 400 500 600 700 800 900

G
oo

dp
ut

, M
b/

s

Time since start of experiment, s

Figure 4: Baseline throughput of path1 (stock
FreeBSD); average is 286 Mb/s.

therefore, are not directly comparable: one cannot be
used to validate the other; rather, they complement
each other to provide both the information about de-
lays experienced by user traffic and about the kernel
state.

Figures 4, 5, 6, and 7 present the changes of
throughput during baseline tests on path1, path2,
path3, and path4, respectively, as a function of
time. On Fig. 4 (the FreeBSD path) the connection
is CPU-limited at the sender; the first spike is likely
to be a slow start artifact; the cause of the second
spike around second 820 is unknown. On Fig. 5 and
Fig. 6 we see the typical fast TCP performance:
a very stable throughput, close to the link capac-
ity on path2; I do not know why path3 obtained
only 651 Mb/s, but it should be noted that, statisti-
cally, this an exceptional level of performance when
viewed among all flows that traverse Abilene [4]. On
Fig. 7 (stock Linux), we observe the characteristic
congestion-limited Reno TCP sawtooth.

Figures 8, 9, 10, and 11 represent the correspond-
ing evolution of the delay on path1, path2, path3,
and path4, respectively. Fig. 8 shows delay that’s as
stable as throughput on Fig. 4; thus, path1, where
TCP is used essentially as a delay and loss measure-

ties: user-space measurements account for complete internal
queues, while kernel-space measurements only account a frac-
tion of the internal queues that depends on where the packet
is timestamped within the kernel.

 0

 200

 400

 600

 800

 1000

 0 100 200 300 400 500 600 700 800 900

G
oo

dp
ut

, M
b/

s

Time since start of experiment, s

Figure 5: Baseline throughput of path2 (fast); av-
erage is 938 Mb/s.

 0

 200

 400

 600

 800

 1000

 0 100 200 300 400 500 600 700 800 900

G
oo

dp
ut

, M
b/

s

Time since start of experiment, s

Figure 6: Baseline throughput of path3 (fast); av-
erage is 651 Mb/s.

 0

 200

 400

 600

 800

 1000

 0 100 200 300 400 500 600 700 800 900

G
oo

dp
ut

, M
b/

s

Time since start of experiment, s

Figure 7: Baseline throughput of path4 (stock
Linux); average is 602 Mb/s.

6

 0

 200

 400

 600

 800

 1000

 0 100 200 300 400 500 600 700 800 900

R
T

T
, m

s

Time since start of experiment, s

avg
min

Figure 8: Baseline round-trip time of path1 (Reno),
measured in user space; minimum is 59ms; average
is 61ms.

ment tool, makes for an good way to evaluate what
would happen to production traffic when the link is
congested. On Fig. 9 and Fig. 10 we see one of the
regimes in which fast TCP can operate: the differ-
ence between the minimum and the average delay is
fairly stable and significant; one can assume that the
delay-based algorithm is trying to drive the delay to
the given target, so the bottleneck queue (inside the
host) is oscillating. Note also the kernel notion of
delay on Fig. 12 and Fig. 13; unfortunately, the fast
kernel did not give any indication of dispersion of de-
lay times (only the exponentially decaying average)
so it is difficult to deduce from the available data
whether the control algorithm is working as it should
and converges to a stable value of the exponentially
decaying average. Fig. 11 complements our under-
standing of the sawtooth by giving us an indication
of the bottleneck queue length before a loss occurs;
note that from the available data we still cannot con-
clude whether the loss is caused by overrunning the
Linux transmit queue (controlled by txqueulen pa-
rameter of ifconfig) or by something else, such as
the increased processing overhead of a longer queue
or perhaps some aspect of the driver behavior; over-
running the queue appears to be the more likely cause
of loss.

Figures 14, 15, 16, and 17, finally, present the main
data of this paper: the results of a concurrent run of

 0

 200

 400

 600

 800

 1000

 0 100 200 300 400 500 600 700 800 900

R
T

T
, m

s

Time since start of experiment, s

avg
min

Figure 9: Baseline round-trip time of path2 (fast),
measured in user space; minimum is 44ms; average
is 63ms.

 0

 200

 400

 600

 800

 1000

 0 100 200 300 400 500 600 700 800 900

R
T

T
, m

s

Time since start of experiment, s

avg
min

Figure 10: Baseline round-trip time of path3 (fast),
measured in user space; minimum is 59ms; average
is 100ms.

7

 0

 200

 400

 600

 800

 1000

 0 100 200 300 400 500 600 700 800 900

R
T

T
, m

s

Time since start of experiment, s

avg
min

Figure 11: Baseline round-trip time of path4 (stock
Linux), measured in user space; minimum is 46 ms;
average is 91 ms.

 0

 200

 400

 600

 800

 1000

 0 100 200 300 400 500 600 700 800 900

R
T

T
, m

s

Time since start of experiment, s

base RTT
avg RTT

Figure 12: Baseline round-trip time of path2 (fast),
measured in kernel space.

 0

 200

 400

 600

 800

 1000

 0 100 200 300 400 500 600 700 800 900

R
T

T
, m

s

Time since start of experiment, s

base RTT
avg RTT

Figure 13: Baseline round-trip time of path3 (fast),
measured in kernel space.

all four flows that resulted in congesting the OC-48
bottleneck link with 2.5 Gb/s of traffic. On the 900-
second baseline plots, each experiment started at its
own time and none had overlapping running times; on
all the 7200-second plots of concurrent runs, on the
other hand, the same period is presented. The verti-
cal hairlines, placed each 900 seconds, mark the be-
ginning and ending times of the flows (table 3). The
30-minute interval from second 2700 to second 4500
is when all four streams are running and the net-
work is congested. Fig. 14 depicts the throughput
changes of the four flows. Fig. 15 and Fig. 16 show
the round-trip time, measured in user space; on other
RTT plots, the average and minimum RTT of the
same flow are shown on the same plot, but in this
case they are split between two figures to avoid plac-
ing eight vigirously fluctuating lines on the same plot.
Fig. 17 reveals the kernel idea of delay on path2 and
path3, both using fast TCP (these data are not
available for conventional TCP paths).

An independent validation of the fact that the bot-
tleneck link was congested during the experiment
comes from SNMP data obtained from the SoX in-
terface of the Abilene core router in Atlanta [3], see
Fig. 18. Note that the utilization shown on that
graph slightly exceeds the link capacity (2.5 Gb/s);
this appears to be either an averaging or plotting ef-
fect within rrdtool or an artifact of the way SNMP
data are propagated within the router from the line

8

 0

 200

 400

 600

 800

 1000

 0

 9
00

 1
80

0

 2
70

0

 3
60

0

 4
50

0

 5
40

0

 6
30

0

 7
20

0

G
oo

dp
ut

, M
b/

s

Time since start of experiment, s

path4
path3
path2
path1

Figure 14: Throughput of all paths during the concurrent experiment.

Second Event
0 path1 starts

900 path2 starts
1800 path3 starts
2700 path4 starts
3600
4500 path2 finishes
5400 path3 finishes
6300 path4 finishes
7200 path1 finishes

Table 3: Timeline of the 2-hour concurrent test.

card to the routing engine.

6 Observations

1. SNMP data shows that the bottleneck link is
congested;

2. Since path1 lines on Figures 14, 15, and 16 are
essentially flat, the bottleneck link never loses
even a single packet belonging to the path1 flow4

and the path1 flow packets are not significantly
delayed (raw data examination shows an increase
of delay of about 5-6 ms);

3. While the baseline tests with fast paths show
moderate increases in observed delay with re-
spect to the base delay, at time of congestion this
delay becomes much greater, sometimes even ex-
ceeding 1 second; yet since the bottleneck link
delay is insignificant, this delay must be com-
ing from queuing sources within the fast TCP
hosts;

4. Similarly great is the measured delay (during
the concurrent run) on path4 using conventional
Linux TCP;

4Since path1 uses conventional Reno TCP, a loss would
result in halving the congestion window—and, thus, the rate—
and slowly ramping it back up. This never happens.

9

 0

 200

 400

 600

 800

 1000

 0

 9
00

 1
80

0

 2
70

0

 3
60

0

 4
50

0

 5
40

0

 6
30

0

 7
20

0

R
T

T
, m

s

Time since start of experiment, s

path4 min
path3 min
path2 min
path1 min

Figure 15: Minimum round-trip time of all paths during the concurrent experiment, measured in user space.

5. In the concurrent run, at time of congestion,
the variability of throughput of fast TCP is
significantly less than at the time when fast
TCP flows share a non-congested bottleneck
with other fast or Reno flows.

7 Conclusions

1. Fast TCP in its present form appears to allow to
perform high-speed data transfers that saturate
the network without adversely affecting produc-
tion traffic, either in terms of loss or in terms of
delay—using simple FIFO queuing and without
any need for quality-of-service techniques such as
scavenger service [10] or any active queue man-
agement techniques.

2. The Linux TCP implementation5 is prone to

5In other tests not described in this paper, internal queuing
was also observed on FreeBSD. However, the phenomenon does
not appear to be reproduceable on FreeBSD and usually only is

building and sustaining queues inside the hosts;
the presence and extent of such undesirable
queuing appear to depend subtly on such factors
as existence of cross-traffic and transmit queue
length. Fast TCP, being a set of kernel patches
to Linux, appears to a certain extent to inherit
this property. Some degree of internal queuing is
normal due to buffering at various levels (write
block size, IP queue, driver queue, NIC buffers);
however, having hundreds of milliseconds worth
of extra queuing delay serves no useful purpose.

8 Acknowledgments

The tests used fast TCP machines owned and oper-
ated by Caltech, with the help of Steven Low, Cheng

manifested at the start of a connection, with the queue drain-
ing afterwards. This seems to suggest that on FreeBSD such
queuing is related to slow start overshoot: FreeBSD remem-
bers slow start threshold value in clone route entries, enabling
subsequent runs to avoid the overshoot.

10

 0

 200

 400

 600

 800

 1000

 0

 9
00

 1
80

0

 2
70

0

 3
60

0

 4
50

0

 5
40

0

 6
30

0

 7
20

0

R
T

T
, m

s

Time since start of experiment, s

path4 avg
path3 avg
path2 avg
path1 avg

Figure 16: Average round-trip time of all paths during the concurrent experiment, measured in user space.

Jin, and Raj Jayaraman. Cas D’Angelo (South-
ern Crossroads GigaPoP), David Richardson (Pacific
Northwest GigaPoP), Matt Mathis (Pittsburgh Su-
percomputing Center), and John Moore (North Car-
olina Internet2 Technology Evaluation Center) pro-
vided high-speed hosting for the test machines.

References

[1] “Abilene Backbone Network,”
http://abilene.internet2.edu/

[2] “Fast Protocols for Unltrascale Networks,”
http://netlab.caltech.edu/FAST/

[3] “Indiana University Abilene noc
Weathermap,”
http://loadrunner.uits.iu.edu/weathermaps/abilene/

[4] “Internet2 NetFlow Weekly Reports,”
http://netflow.internet2.edu/weekly/

[5] C. Jin, D. X. Wei and S. H. Low, “Fast TCP:
motivation, architecture, algorithms,
performance,” IEEE Infocom, March 2004

[6] S. Shalunov, “i2perf, network capacity tester,”
http://www.internet2.edu/˜shalunov/i2perf/

[7] S. Shalunov, “Fast TCP tests over Abilene
conducted at 2003-09-23T06:00Z,” test log,
http://www.internet2.edu/˜shalunov/fast-tcp-

abilene/

[8] S. Shalunov, “Testing fast TCP over Abilene,”
presentation at FAST TCP project review,
October 2003, Caltech,
http://www.internet2.edu/˜shalunov/talks/20031029-

Caltech-FAST-Review.pdf

[9] “SoX: About Us”, section “SURA Members,”
http://www.sox.net/about/main.htm

[10] “QBone Scavenger Service (QBSS),”
http://qbone.internet2.edu/qbss/

11

 0

 200

 400

 600

 800

 1000

 0

 9
00

 1
80

0

 2
70

0

 3
60

0

 4
50

0

 5
40

0

 6
30

0

 7
20

0

R
T

T
, m

s

Time since start of experiment, s

path2 avg
path3 avg

path2 base
path3 base

Figure 17: Round-trip time of path2 and path3 during the concurrent experiment, measured in kernel
space.

Figure 18: The rrdtool plot of link utilization (5-minute averages) on the SoX interface of the Abilene
core router in Atlanta, viewed after the experiment was over.

12

