
Debugging end-to-end performance in
commodity operating systems.

Sven Ubik, <ubik@cesnet.cz> and Pavel Cimbal, <P.Cimbal@sh.cvut.cz>
CESNET, Prague, Czech Republic

I. INTRODUCTION

The Internet infrastructure is very diverse, but when
it comes to end hosts interfacing the Internet to the
users, the PC hardware with one of a few so called
commodity operating systems, such as Microsoft Win-
dows or Linux is prevalent.

It turns out that many performance problems in net-
work communication, particularly in high-speed long-
distance networks, are caused by improper behaviour
of end hosts, rather than by the network itself. Un-
derstanding of the behaviour of commodity operating
systems, networking applications, their mutual inter-
action and their interaction with a computer network
is required to identify and resolve these problems. Our
goal in this paper is to identify some of these problems
and suggest possible solutions. Many advanced In-
ternet users, requiring high network performance, use
the Linux operating system. Therefore, we decided to
concentrate on networking support in Linux. Particu-
larly, we will show that just setting large TCP buffers
is not suf£cient to reliably achieve high throughput.

II. USING COMMODITY OPERATING SYSTEMS IN

HIGH-SPEED LONG-DISTANCE NETWORKS

Based on net¤ow statistics from backbone routers,
over 95% of data currently transferred over the Inter-
net is carried in the TCP protocol. The current state of
networking support in all commodity operating sys-
tems after the default installation procedure and sys-
tem boot is that they perform very poorly over high-
speed long-distance networks. The primary reason are
small default TCP buffers resulting in TCP connec-
tions being slowed down by small ¤ow control win-
dows.

In most cases, increasing the size of TCP buffers
from the default values helps to increase throughput.
Several tools have been developed in the form of ker-

nel patches or daemons to help £nd the optimal buffer
sizes for particular network conditions [1], [2], [3].
Using these tools is a procedure for advanced users
requiring a lot of manual installation and con£gura-
tion. Simply setting a proper size of TCP buffers al-
lows to achieve throughput at most a few hundreds
of megabits per second. The primary limitation is
in TCP congestion avoidance based on AIMD(1, 1/2)
algorithm [12], [11]. There are proposals to modify
TCP congestion avoidance by adjusting its aggresive-
ness and responsiveness according to the current TCP
window size [4] or to use another congestion control
algorithm [5].

III. GAP BETWEEN RESEARCH, SPECIFICATIONS

AND IMPLEMENTATION

It appears that some commodity operating systems
include their own modi£cations to TCP implementa-
tion with respect to the speci£cation in RFCs and other
documents. These modi£cations should be considered
in studies of new mechanisms designed for the use in
public Internet. In¤uence of these modi£cations and
of implementation problems in some commonly used
networking applications on the network performance
can be stronger that various subtle improvements to
TCP congestion control proposed in research papers.

IV. LINUX TCP IMPLEMENTATION SPECIFICS

Linux kernel 2.2 behaved closely to the speci£ca-
tion in RFCs. Beginning with the Linux kernel 2.4
a lot of differences from the speci£cation have been
introduced. Most differences are very poorly docu-
mented only within the kernel source code. This is
surprising considering how widely used is the Linux
kernel 2.2 for network performance experiments.



A. Sizes of TCP buffers

Actual sizes of sending and receiving TCP buffers
(and rcwd advertised by the receiver) are different
from values supplied to setsockopt() call for
SO SNDBUF and SO RCVBUF socket options. This
must be taken into account when doing performance
tests and when setting buffer sizes for proper TCP op-
eration. The supplied values are £rst multiplied by
2 and stored in internal variables. The content of
these variables is returned by getsockopt() call.
If setsockopt() was not called, system default
values (see below) are copied to internal variables.
In Linux 2.2 the content of these internal variables is
again divided by two before setting the buffer sizes or
advertised rwnd. Division by two is probably legacy
to deal with old TCP implementations that used 16-bit
signed variables for window arithmetics. And mul-
tiplication by two is probably legacy of patching the
previous patch to behave as expected. In Linux 2.4
division by two was removed. The real buffer sizes
are therefore twice as speci£ed by setsockopt().
When an application does not explicitely request
buffer sizes by calling setsockopt(), the kernel
uses heuristics to choose the initial buffer sizes accord-
ing to net/ipv4/tcp [rw]mem kernel variables
and current memory consumption.

B. Application buffer clamping

The advertised rwnd is computed from the inter-
nal variable described in the previous section using
tcp adv winscale kernel parameter as: internal
variable ∗(1 − 1/2tcp adv winscale). The remaining
part of the receiving buffer is clamped as application
buffer. The purpose is to smooth out advertised rwnd
by setting aside part of the received data waiting to be
read by application out of the receiving buffer.

C. Runtime window moderation

During the connection, the kernel tries to moder-
ate rwnd advertised by the receiver as well as cwnd
computed by the sender. The advertised rwnd grows
from a small initial value to the size of the receiving
buffer (without the clamped application buffer). This
growth is driven by data being received. If little data
is received, rwnd grows slowly. The computed cwnd

is moderated so that it does not grow too much over
the “¤ight size”. The purpose of this moderation is to
prevent large packet loss, which could be caused by a
sudden burst coming after a period of low sender band-
width, when cwnd was allowed to grow unimpeded
and rwnd was too high.

D. Fast path, slow path

The kernel can process packets in two modes - fast
path and slow path. If the connection is purely unidi-
rectional, that is only pure ACKs are sent in one direc-
tion and data segment in the other direction, fast path
is used. If the connection is bidirectional (one data
segment sent in the other direction is suf£cient), the
kernel switches to slow path.

E. TCP parameter cache

Certain TCP runtime parameters such as ssthresh
are cached for 10 minutes for individual destination IP
addresses and used for subsequent connections to the
same destinations. This can in¤uence performance of
subsequent nconnections.

V. OBSERVATIONS IN PERFORMANCE DEBUGGING

Low and unreliable throughput was observed be-
tween two machines connected at different points of
the European Géant network. One PC was located in
Uninett, Norway and the other was located in Cesnet,
Czech Republic.

Setting large TCP buffers helped to get only about
25% of available capacity and throughput began to de-
crease when buffer sizes were increased over certain
limit.

Both PCs were PIII/850 MHz with Gigabit Ethernet
adapters in 64-bit/ 66 MHz slots. Terrestrial distance
along the wires was approximately 1530 km. The con-
nection consisted of 10 routers and Gigabit Ethernet,
OC-48 and OC-192 links (only 1.2 Gb/s was enabled
on OC-192 links by £lters due to cost limitations). The
round-trip time was 40 ms. The slowest links were
running Gigabit Ethernet. Therefore the capacity of
the empty pipe was 1000 Mb/s * 40 ms = 5 MB. We
enabled window scaling option and set system-wide
limits on TCP buffer sizes to 16 MB.

We tried to check available capacity by brute force
with RUDE/CRUDE [7] utilities. RUDE sent a stream



of 1500-byte UDP packets at the rate ranging from
300 Mb/s to 1000 Mb/s in 20 Mb/s increments to be
captured by CRUDE on the other side. Throughput
stopped increasing at 457 Mb/s and was probably lim-
ited by the speed of the receiving PC. However, packet
losses were occuring beginning at about 340 Mb/s,
which would in¤uence TCP congestion control.

We also tried to check available bandwidth with
modi£ed pathload [8] tool. It is distributed with built-
in constants limiting its operation to 120 Mb/s. These
constants can be tweaked to allow operation to the full
Gigabit Ethernet speed. However, our experience is
that the pathload output is not reliable. Depending
on network conditions, the produced results can be
divided into three cases: i) it correctly iterates with
variable-rate packet chains to the realistic available
bandwidth estimated with 50 Mb/s precision (when
that happen on our network path, the indicated avail-
able bandwidth was in the range of 850-1000 Mb/s,
probably periods of lighter load), ii) it looses lots of
packets even in low-rate chains and falsely states the
available bandwidth in the range of 50-100 Mb/s and
iii) it does not detect any delay increase even in high-
rate chains and states an unlikely available bandwidth
of 1000 Mb/s.

We then used iperf to measure TCP throughput and
scp to copy a 100 MB £le. Averages of £ve mea-
surements for different window sizes are shown in Ta-
ble I. The indicated window sizes are the real ones
after considering buffer size arithmetics and clamp-
ing as described in section III. Note that throughput
was decreasing when buffer sizes were increased over
2 MB. Throughput over a back-to-back connection of
the two same PCs as those used in the measurement
was 531 Mb/s.

We checked for packet losses during connection.
Neither PC reported any link layer errors. We captured
the connection trace by tcpdump run on a third PC
connected to a switch port con£gured to mirror outgo-
ing and incoming packets of the sender PC to prevent
in¤uence of tcpdump on a monitored connection. The
monitoring PC was able to capture almost all packet
headers including TCP options with minimal losses.
We found there were occassional losses in the mon-
itored connection. Most of them were dealt with by
the Fast Recovery mechanism. It looked like lightly-

TCP window iperf throughput

1 MB 135 Mb/s
2 MB 230 Mb/s
4 MB 153 Mb/s
8 MB 115 Mb/s

TABLE I
Throughput over Géant network

iperf

1 MB 138 Mb/s
2 MB 244 Mb/s
4 MB 357 Mb/s
8 MB 262 Mb/s
16 MB 149 Mb/s

TABLE II
Throughput over Géant network with txqueuelen set

to 1000

loaded network path. For some reason, the sender was
not able to utilize the available capacity although its
CPU load was low.

We began to suspect the end hosts. We found that
increasing the txqueuelen parameter set by the ifcon£g
utility signi£cantly reduced the effect of throughput
decrease with large TCP windows. Measured through-
put averaged over £ve measurements is shown in Ta-
ble II. In all cases, throughput increased intil 4 MB
TCP windows. It began to decrease with either 8 MB
or 16 MB TCP windows. Our theory is that with small
lower-level kernel queues limited by the txqueuelen
parameter, these queues can be £lled up too early, the
CPU context is switched to another process and by
the time it is switched back to the sender process, the
queue is empty and the network adapter has nothing to
send. To deal with Gigabit Ethernet speed and 100 Hz
default rate of the Linux system timer, we need to in-
crease txqueuelen to about 1000 packets (1000*1500
bytes* 8 bits / 109 bits/second = 0.12 second). We
found that setting it to higher values did not have any
further effect on resulting throughput.

By further inspection of tcptrace diagrams we found



that large-window connections (at 8 MB and 16 MB)
exhibited signi£cantly more losses than small-window
connections. These losses frequently resulted in re-
peated slow starts, reducing ssthresh limit with very
slow cwnd increase by congestion avoidance after-
wards. All these connections exhibited round-trip
times ¤uctuating up to 120 ms, that is much higher
than the empty pipe round-trip of 40 ms. Our theory is
that this effect is caused by two factors. First, although
the TCP connection is self-regulating in a sense that a
larger round-trip time means slower cwnd increase, it
shows that with a large window advertised by the re-
ceiver, the sender can overshoot available bandwidth
too much and the decrease in sender speed comes too
late to prevent congestion and loss. Second, utilizing
buffered pipe capacity instead of empty pipe capacity
does not increase throughput, but £lled-up queues in-
crease probability of congestion caused by ¤uctuating
cross traf£c. Therefore, we recommend not to set re-
ceiver advertised window too higher. Setting it only
slightly more than the empty pipe capacity allows the
best performance TCP connections in most cases.

We also observed that in some cases cwnd was in-
creasing very slowly from the beginning of the con-
nection and failed to open enough to use available
nadwidth during the connection time. It turned out
that ssthresh was set too low at the beginning of
the connection as a result of caching from previous
connections and prematurely ending the slow start
phase. Although we found that this phenomenon was
not common, it seems that TCP parameters cache is
more likely to be harmfull than useful and we recom-
mend to ¤ush its content before opening every long-
distance connection. It can be done with echo 1
> /proc/sys/net/ipv4/route/flush com-
mand.

VI. PRT INITIATIVE

In order to help users who need high network per-
formance and do not have expertise or time to per-
form debugging procedures themselves, the Euro-
pean Performance Response Team (PRT) initiative has
started. Initiated by European NRENs (National Re-
search and Educational Networks), its mission should
be [13]: “To provide a support structure for end user
to help solve performance issues when using applica-

tions over a computer network”. Roughly speaking it
should be comparable to what CERT means for com-
puter security. A kick off meeting will take place in
Amsterdam on December 17, 2002. As part of the
PRT project, the “End-to-end performance cookbook”
should be developed to share the necessary expertise.
It is proposed to be an online, well structured resource
supporting semi-automatable updates from users to
keep the content up-to-date and the amount of work
manageable.

VII. SCAMPI - A SCALEABLE MONITORING

PLATFORM FOR THE INTERNET

In order to provide advanced programmable moni-
toring capabilities for high-speed networks, SCAMPI,
a two-and-a-half-year European project is currently
developing a scaleable monitoring platform for the
Internet [9]. The architecture will use both an in-
telligent, high-speed network adapter, running at 10
Gb/s and developed as part of the project, as well as
a commodity Fast Ethernet or Gigabit Ethernet net-
work adapters. The middleware will provide modules
for reading packets from speci£ed named ¤ows and
applying functions on them, accessible to program-
mers in the form of MAPI (Monitoring API). On top
of MAPI, multiple concurrent monitoring applications
will be executed, such as packet capture, QoS monitor-
ing or intrusion detection. SCAMPI is primarily de-
signed for passive monitoring, but it will also function
as a programmable packet generator for active moni-
toring. Moving time-critical operations, such as var-
ious counters and pattern recognition functions into
hardware will allow to perform monitoring of speci-
£ed phenonema affecting performance in high speed.

VIII. FUTURE WORK

We are now working on investigation of perfor-
mance problems of some commonly used network ap-
plications such as scp.

We plan to study implementation of more appropri-
ate receiver advertised buffer moderation.

We will work on QoS and performance monitoring
application running on top of the SCAMPI architec-
ture that will help to identify certain performance re-
lated problems.

We will participate in the PRT initiative.



IX. CONCLUSION

• The in¤uence of the networking subsystem con£g-
uration on end hosts and the in¤uence of modi£ca-
tions to TCP implementation already present in com-
modity operating systems on the resulting throughput
and TCP behaviour can very signi£cant and probably
stronger than the in¤uence of various enhancements of
the TCP congestion control described in literature.
• Analytical studies and simulations about TCP per-
formance should take into account a huge installed
base of TCP implementation using different conges-
tion control from what is described in RFCs.
• Lots of research has been performed, new mecha-
nisms have been explored by simulations and speci£ed
in RFCs and Internet Drafts but commodity operating
systems are being developed by different people.
• PRT initiative kicked off, can it be the place for in-
teraction of research people with software developers,
equipment manufacturers and other communities in-
volved in high-performance networking?

REFERENCES

[1] W. Feng, M. Fisk, M. Gardner, E. Weigle. Dynamic Right-
Sizing: An Automated, Lightweight, and Scalable Technique
for Enhancing Grid Performance, PfHSN 2002, Berlin, Ger-
many.

[2] Tom Dunigan, Matt Mathis, Brian Tierney. A TCP Tuning
Daemon, SC2002, Baltimore, Maryland, USA.

[3] Web100, version 2.1, http://www.web100.org.
[4] Sally Floyd. “HighSpeed TCP for Large Congestion Win-

dows”, draft-¤oyd-tcp-highspeed-00.txt, Internet Engineering
task Force, June 2002.

[5] Dina Katabi, Mark Handley, Charlie Rohrs. Internet Conges-
tion Control for Future High Bandwidth-Delay Product Envi-
ronments, ACM SIGCOMM 2002.

[6] “NIST Net”, Internetworking Technology Group (ITG),
National Institute of Standards and Technology (NIST),
http://snad.ncsl.nist.gov/itg/nistnet.

[7] RUDE/CRUDE utilities, http://rude.sourceforge.net.
[8] Manish Jain, Constantinos Dovrolis. Pathload: a measure-

ment tool for end-to-end available bandwidth, PAM 2002.
[9] SCAMPI project. http://www.ist-scampi.org.
[10] Sven Ubik, Josef Vojtech. Using end-to-end bandwidth esti-

mation tools in high-speed networks, CESNET Technical Re-
port, work in progress.

[11] Matthew Mathis, Jeffrey Semke, Jamshid Mahdavi. “The
Macroscopic Behaviour of the TCP Congestion Avoidance
Algorithm”, Computer Communications Review, Vol. 27, No.
3, July 1997.

[12] Jitendra Padhye, Victor Firoiu, Don Towsley, Jim Kurose.
“Modeling TCP Throughput: A Simple Model and its Em-

pirical Validation”, IEEE/ACM Transactions on Networking,
April 2000.

[13] Prezentation of Victor Reijs, 9th TF-NGN meeting, October
18, 2000, Budapest, Hungary.


