A Fluid-based Simulation Study:
The Effect of Loss Synchronization on Sizing Buffers over 10Gbps High Speed Networks

Suman Kumar, Mohammed Azad, Seung-Jong Park*

Computer Science Department and
Center for Computation and Technology
Louisiana State University
Outline

- Background
- Problem and Motivation
- Fluid Model for High Speed Networks
- Performance Evaluation on 10Gbps High Speed Networks
- Conclusion and Future Research Direction
Background: Initial Work

- Packet switching networks need a buffer at routers to
 - Absorb the temporary bursts to avoid packet losses
 - Keep the link busy during the time of congestion

- Classic rule of thumb for sizing buffers to achieve full link utilization requires
 - $2T$ is the two-way propagation delay
 - C is capacity of bottleneck line

$$B = 2T \times C$$

Villamizar and Song: “High Performance TCP in ANSNET”, CCR, 1994
Background: Recent Works

- Small size buffers are enough to achieve high link utilization [Appenzeller 2004, Raina 2005, etc]

\[B = \frac{2T \times C}{\sqrt{n}} \]

- Based on assumptions:
 - Larger number of flows than 100 or 1,000 flows
 - Desynchronized and long-lived flows
 - Non-burst traffic flows
Motivation to Revisit

- Different characteristics of high speed networks
 - A few number of users sharing high speed networks
 - Most of applications over 10Gbps high speed networks
 - Create a few number of parallel TCP flows
 - Most of TCP variants for high speed networks
 - Produce high burst traffic
 - Larger buffer than BDP is not feasible for high speed networks

- Reconsideration on the sizing buffer over 10Gbps high speed networks
 - Step 1: Find an efficient simulation method for 10Gbps networks
 - Step 2: Evaluate the performance as a function of buffer size
 - Step 3: Analyze the impact of synchronization of TCP flows
Comparison of Simulation Methods

- **NS2/NS3 Simulation**
 - Only Gigabit results are available
 - Does not scale to bandwidth of the order of 10Gbps

- **Queuing Model [Raina 2005, Barman 2004]**
 - Produces statically stable averaged results

- **Fluid Simulation [Liu 2003]**
 - Describes dynamic nature of TCP flows, buffer occupancy, etc.
Scope of this work

- Network operator’s Dilemma
 - How much buffering to provide

- Network Users Dilemma
 - Which high speed TCP variants to use

- Goal:
 - Understand the impact of loss synchronization on sizing buffers
 - The effect of these two on the performance of high speed TCPs on 10Gbps high speed networks
A General Fluid Model

- Traffic is modeled as fluid. [Fluid model - Misra et al]

 - TCP congestion window:
 \[
 \frac{dW_i(t)}{dt} = \frac{1(W_i(t) < M_i)}{R_i(t)} - \frac{W_i(t)}{2}\lambda_i(t)
 \]

 - Queue dynamics
 \[
 \frac{q_i(t)}{dt} = -1(q_i(t) > 0)C_i + \sum_{i=1}^{n_l} A_i^i(t)
 \]

 - Sum of the arrival rates of all flows at bottleneck queue
 \[
 ARsum_1 = \sum_{i=1}^{n_l} A_i^i(t)
 \]

 - DT queue generates the loss probability
 \[
 p_i(t) = \begin{cases}
 0, & q_i(t) < q_i^{max} \\
 \max(\frac{ARsum_1 - C_i}{ARsum_1}, 0), & q_i(t) = q_i^{max}
 \end{cases}
 \]

 - This loss probability is proportionally divided among all flows
 \[
 \lambda_i(t) = \sum_{l \in F_i} A_i^i(t)p_l(t)
 \]

Above model do not capture loss synchronization
Loss-Synchronization Model

- Synchronization controller
 - Controls the loss synchronization factor ($= m_k$) at the time of congestion.

- Drop Policy controller
 - Selects those m_k under some policy
Loss Synchronization Model

- **Synchronization Controller**
 - Selects m_k flows to drop

- **Drop policy controller**
 - At k^{th} congestion, the packet-drop policy controller determines the priority matrix $P^k = [D_{k1}, D_{k2}, ..., D_{kN}]$
 - $D_{ki} > D_{kj}$ indicates that packets in flow i have higher drop probability than flow j

- **All the flows satisfy**
 - Every loss is accounted and distributed among the flows
 \[
 \sum_{i \in P_l_k} \lambda_i(t) = ARsum_l - C
 \]
High-Speed Network Simulation Set-up

- Congestion events occur when bottleneck buffer is full.
- Highest rate flows are more prone to record packet losses.
 - Drop highest rate flows first
- High Speed TCP flow's burstiness induces higher level of synchronization.
 - Select random m_k at any congestion event k, we define a synchronization ratio parameter X.
 - Ratio of synchronized flows (i.e. experiencing packet losses) and total number of flows is no less than X
 - Selection of X satisfies a least certain level of drop synchronization

Performance Matrix

- %link utilization denoted as
 $$U = \frac{\sum_s \sum_{i=1}^{n_l} Dep_i(t_s)}{C_l \times \sum_s} \times 100$$
 - sample the departure rate ($= (dep_i)$ of all the flows i at the bottleneck link
Fluid Model Equations for high speed TCP-Variants

<table>
<thead>
<tr>
<th>TCP-Variant</th>
<th>(a)</th>
<th>(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP-Reno</td>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td>STCP</td>
<td>(0.01w)</td>
<td>0.125</td>
</tr>
<tr>
<td>HSTCP</td>
<td>(\frac{2^{\frac{a}{w-b}}}{2-b})</td>
<td>((0.1 - 0.5)\frac{\log(w) - \log(w_{low})}{\log(w_{high}) - \log(w_{low})} + 0.5)</td>
</tr>
<tr>
<td>CUBIC-TCP</td>
<td>(\text{Min}(target_w - w, S_{\text{max}}R))</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td>Where, (target_w) = (\text{origin-point} + c(\Delta t_K - K)^3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(K = (b \cdot \text{prevMax}_w / c)^{\frac{1}{3}})</td>
<td></td>
</tr>
<tr>
<td>H-TCP</td>
<td>(1 + 10(\Delta i - \Delta th) + (\Delta i - \Delta th)^2)</td>
<td>(1 - \frac{R_{\text{min}}}{R_{\text{max}}})</td>
</tr>
<tr>
<td>FAST-TCP</td>
<td>(\text{Min}(w, \gamma(2\text{baseR}) - \text{avgRTT} \cdot \frac{w}{\text{RTT}} + \alpha)</td>
<td>0.5</td>
</tr>
</tbody>
</table>

\[
\frac{dW_i(t)}{dt} = \frac{a(t)}{R_i(t)} - W_i(t)b(t)\lambda_i(t)
\]

Simulation Setup

- Unfair drop-tail with the support of loss-synchronization
 - Two level of Synchronization
 - Low, \(X=0.3 \)
 - High, \(X=0.6 \)
- \(m \) is drawn from normal distribution and bounded by above values of \(X \)
Fluid simulation with synchronization model gives more accurate and realistic results than the Boston model.
Simulation Setup for 10Gbps Networks

- Network Topology = Dumb-bell
- Number of flows = 10
- Bottleneck Link = 10Gbps,
- Link delay = 10ms
- RTTs of 10 flows are ranging from 80ms ~ 260ms
- Maximum buffer size = 141,667 of 1500Byte packets
 (calculation based on average RTT of 170ms)
Simulation Results

(a) HSTCP

(b) CUBIC

(c) AIMD

(d) HTCP
Observations

- Measured throughputs of high speed TCP variants were lower than that of TCP Reno especially for high level of synchronization.

- For HSTCP, more than 90% link utilization can be achieved with buffer size fraction of 0.05.

- Main reason for the poor performance of CUBIC and HTCP as compared to AIMD and HSTCP is attributed to its improved fairness.

- Lower synchronization (= Higher desynchronization) further improves the link utilization for HSTCP and AIMD.
Conclusion and Future Work

- A loss synchronization module for fluid model simulation is proposed.

- Simulation results for HSTCP, CUBIC and AIMD are presented to show the effect of different buffer sizes on link utilization.

- Loss synchronization module as a black box, where loss synchronization data can be fed from real experiments or one can utilize some theoretical distribution models.

- Future work
 - Exploration of more accurate models for drop synchronization
 - Proposing desynchronization methods
Experiment with CRON

- Experimental design with Java based GUI of Emulab
 - Additional features such as tracing, Link Queuing policy, traffic generators, availability of TAR files etc.
Experiment with CRON contd…

Experiment Options
- View Activity Logfile
- Swap Experiment Out
- Terminate Experiment
- Modify Experiment
- Modify Traffic Shaping
- Modify Settings
- Link Tracing/Monitoring
- Event Viewer
- Update All Nodes
- Reboot All Nodes
- Run LinkTest
- Show History
- Duplicate Experiment

Reserved Nodes

<table>
<thead>
<tr>
<th>Node ID</th>
<th>Name</th>
<th>Type</th>
<th>Default OSID</th>
<th>Node Status</th>
<th>Hours [1]</th>
<th>Startup Status [2]</th>
<th>SSH</th>
<th>Console</th>
<th>Log</th>
</tr>
</thead>
<tbody>
<tr>
<td>pc1</td>
<td>node1</td>
<td>pcSUN4240</td>
<td>UBUNTU10-64.BETA-10K</td>
<td>possibly down</td>
<td>29.03?</td>
<td>none</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pc3</td>
<td>node2</td>
<td>pcSUN4240</td>
<td>UBUNTU10-64.BETA-10K</td>
<td>possibly down</td>
<td>34.97?</td>
<td>none</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pc4</td>
<td>lbdelay1</td>
<td>pcSUN4240</td>
<td>FBSD81-04-DELAY-BETA</td>
<td>up</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pc5</td>
<td>lbdelay2</td>
<td>pcSUN4240</td>
<td>FBSD81-04-DELAY-BETA</td>
<td>up</td>
<td>0.08</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pc6</td>
<td>node3</td>
<td>pcSUN4240</td>
<td>UBUNTU10-64.BETA-10K</td>
<td>possibly down</td>
<td>16.78?</td>
<td>none</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pc7</td>
<td>router</td>
<td>pcSUN4240</td>
<td>UBUNTU10-64.BETA-10K</td>
<td>up</td>
<td>16.36</td>
<td>none</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pc9</td>
<td>lbdelay0</td>
<td>pcSUN4240</td>
<td>FBSD81-84-DELAY-BETA</td>
<td>up</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Experiment with CRON contd…

- Y-topology similar to Dumbbell
- Dummynet software emulators were used to emulate large size buffers
- Bottleneck link has 8Gbps bandwidth and 30msec
- CRON testbed webpage
 - http://cron.cct.lsu.edu

Visualization, NS File, and Details

Experiment CRONtest/Test
Experimental Results and Analysis

Link Utilization - Two flow

Queue size in % of BDP

Link Utilization - 4 flows

Queue size in % of BDP
Questions ?