Enabling Renewed Innovation in TCP by Establishing an Isolation Boundary

Umar Kalim*,+, Eric Brown+,, Mark K. Gardner+,, Wu-chun Feng*

Department of Computer Science*, Office of IT+
Virginia Tech
11/28/2010
Why Renewed Innovation?

• Desirable functionality
 – Multipath TCP / Multihoming
 – Flow Migration
Why Renewed Innovation?

• Desirable functionality
 – Hybrid Transports

Motivation

Motivation

- **Existing solutions**
 - TCP option space
 - MPTCP addresses the issue
 - Custom libraries
 - Duplication of effort
 - Clean-slate approach

- **Legacy behind TCP**
 - Experience and tools built to support TCP
 - Best to adopt an incremental approach
Proposed Solution

• Goals
 – Extract commonality in current work
 – Lay the foundation for higher layer services
 – Admit incremental adoption

• Common mechanism
 – Decouple application stream from transport flows
 – Construct a control channel

• Leverage TCP options
Outline

• Motivation
• Proposed Solution
 – Isolation Boundary: An Overview
 – Connection Setup
 – Control and Data Option
• Community Engagement
• Contribution and Implications
Isolation Boundary: An Overview

- Decouple application-data stream from transport-endpoint identification
 - Avoid use of 4-tuple for transport endpoint ID
- TCP Isolation Boundary Option
- Partially adapt Isolation Layer proposed by Next Generation Transport (Tng)*

Transport Independent Flow Setup

- Along with TCP Handshake

Peer subscripts A and B are used.

Choose TIFID

Choose TIFID\(_A\) and TISeq\(_A\),

\[
\text{SYN} + \text{TIFID}_A + \text{TISeq}_A
\]

Record TIFID

Record TIFID\(_B\), TISeq\(_B\),

\[
\text{SYN} + \text{ACK} + \text{TIAck}_A + \text{TIFID}_B + \text{TISeq}_B
\]

\[
\text{ACK} + \text{TIAck}_B
\]

Interference? Fallback!

Transport Independent Flow ID (TIFID)

<table>
<thead>
<tr>
<th>Sequence #</th>
<th>Acknowledgement #</th>
</tr>
</thead>
</table>

TISeq – Transport Independent Sequence #
TIAck – Transport Independent Acknowledgement #

Virginia Tech
Invent the Future
Isolation Boundary Options

- Isolation Boundary Option - Control
 - Admits out-of-band control channel
- Control protocol to be defined by community
Isolation Boundary Options

- Not all applications need a control channel
- Isolation Boundary Options
 - Control
 - Data
Isolation Boundary Options

- Isolation boundary enables reconnection
 - From network fault

Reuse TIFID and TISeq_A

Ack TISeq_B

Connection Established

Disconnection

Identify TIFID, Ack. TISeq_A

ACK + TIAck_B
Flow Termination

- Control Channel to clear state
- Exchange of TCP FINs implies cleanup
- Rely on timeouts for network faults
Community Engagement

- Standardization
 - Specification of the extensible control channel
 - Reference implementation
- Wire Protocol Specification
- Isolation Boundary for other transports
Contribution and Implications

• Develop an Isolation Boundary
 – Decouple the entity naming from transport-endpoint identification
 – Construct a control channel to facilitate higher layer services

• Infrastructure support for
 – Hybrid transport
 – Multihoming
 – Flow migration over networks
 – Flow migration between processes
 – Reconnection after network fault
 – ... and other innovations as the community thinks of them
Thank you

• Contact
 – Umar Kalim - umar@cs.vt.edu
 – Eric Brown - brownej@vt.edu
 – Mark Gardner - mkg@vt.edu
 – Wu-chun Feng – feng@cs.vt.edu

• SyNeRGy
 – http://synergy.cs.vt.edu

This research is supported in part by Juniper Networks and Virginia Tech
Analysis

• TCP Options Space
 – 3-way handshake ~ 20 octets available
 • MSS, Window Scaling, SACK, Timestamp

• Incompatible Options
 – Alternate checksum, Partial Ordering, Transactional TCP, TCP MD5, TCP Authentication, Quick Start Response

• Performance
 – Exchange is off the critical data path (3-way handshake)

• SYN Cookies
 – IBO not preserved when under attack
Analysis

• Middleboxes
 – Fall back to legacy TCP if options are stripped

• Security
 – No worse than TCP
 – To hijack a session the attacker must know:
 • Transport Independent Flow ID
 – Exchanged only during 3-way handshake
 • Sequence numbers for unacknowledged data
 – Each TCP segment must be accounted for, to derive current state from Initial Seq. Nos.

• Application Compatibility
 – Backward compatible