
Chirping for Congestion Control -
Implementation Feasibility∗

Mirja Kühlewind
Institute of Communication Networks and

Computer Engineering (IKR)
University of Stuttgart, Germany

mirja.kuehlewind@ikr.uni-stuttgart.de

Bob Briscoe
BT

Sirius House, Adastral Park
Ipswich, IP5 3RE, UK

bob.briscoe@BT.com

ABSTRACT
We present lessons from implementing a bandwidth probing
scheme termed chirping as part of congestion control in the
Linux kernel. Chirping was first introduced for bandwidth
estimation in the pathChirp tool. A chirp is a group of sev-
eral packets that are sent with decreasing inter-packet gaps
in order to continuously probe for spare bandwidth. Cur-
rent congestion control schemes are either slow to find new
bandwidth or they overshoot due to lack of fast feedback
information. The attraction of using chirping as a building
block for congestion control is to be able to non-intrusively
probe for available capacity in a very short time. But imple-
menting chirping is challenging because it requires an exact
timing of every packet which is very different to the tradi-
tional approach in the network stack. As there are changes
needed at the receiver as well, we also discuss a potential
approach for deployment. Success in detecting fast feedback
information using chirping opens the possibility of future
work on new congestion control designs that should be more
responsive with less overshoot.

1. INTRODUCTION
A well known problem of Transmission Control Protocol

(TCP) congestion control is the inability to quickly reach
high throughput in high-speed or highly dynamic bandwidth
environments. To overcome this problem, new TCP variants
increase their rate more rapidly. But consequently they suf-
fer from overshoot, i.e. they increase too far above the cor-
rect rate, leading to significantly greater loss for other flows.

A promising new approach is congestion control based
on continually sending so-called chirps or multi-rate probe
streams of packets, as proposed in [9]. A chirp is a group
of several packets that are sent with decreasing inter-packet

∗
This work is partly funded by Trilogy, a research project (ICT-

216372) supported by the European Community under its Seventh
Framework Programme. The views expressed here are those of the
author only. This work is also supported by the German Research
Foundation.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

gaps and respectively increasing rate. Thus the packets of
the beginning of every chirp are sent at a slower rate, ris-
ing to a faster rate at the end. For every chirp the average
sending rate is set equal to the rate that the sender wants to
achieve. This offers a probing scheme with effective probing
rates that vary by orders of magnitude within one chirp, but
without overloading the network. Sending with increasing
rate within one chirp leads to self-induced congestion for a
short duration when the per-packet rate is higher than the
available capacity. By measuring the relative queuing delays
within such a chirp, the sender can estimate the currently
available bandwidth, and use this information to adapt the
average sending rate of subsequent chirps. Furthermore, this
scheme is more robust to noise than other proposed delay-
based mechanism.

Rate estimation based on chirping was proposed in [14]
for the pathChirp bandwidth estimation tool. The first pro-
posal to use chirping continuously for congestion control was
TCP RAPID [9]. With RAPID congestion control the rates
of the packets within a chirp are selected in a way that the
average rate converges towards the rate estimation of a pre-
vious stream. This utilizes the spare capacity on a network
link. The algorithm is summarised in Appendix A. How-
ever, [9] recognises that implementation in a production op-
erating system will be needed to answer questions that their
simulations in ns-2 cannot address.

We have therefore implemented chirping and associated
congestion control in the network stack of a production op-
erating system kernel. This paper presents the challenges
we encountered and reasoning for the choices we made.

Note that this paper is not an evaluation of the RAPID
congestion control algorithm. We certainly implemented it
and we make a few remarks about it. But we merely im-
plemented RAPID as an initial placeholder algorithm to ex-
ercise our chirping code. Eventually we would like to build
our own congestion control algorithm around chirping, but
first we have to check whether chirping is feasible. Even if it
proves feasible to implement, we then have to check whether
chirping can be made sufficiently robust against noise; but
that is beyond our present scope.

The goal of this paper is to provide a base on which others
can build research in this area. To this end we offer three
different types of contribution:
Structured the problem space: We have identified that
i) rate adaptation, ii) rate estimation and iii) adapting chirp
parameters are three independent sub-problems. A solution
to one can be swapped out without affecting the others.
Identified challenges: These can be divided into two sets:

1. Implementation challenges: We cannot use ACK-clocking
to determine when to send out each packet within a
chirp. With ACK-clocking the arrival of each TCP ac-
knowledgement (ACK) triggers most state transitions,
therefore it is a considerable challenge to replace it. In-
stead each packet release has to be separately timed,
which could create a heavy interrupt processing bur-
den. Moreover, chirping does not need the concept
of a Congestion Window (CWND) either. However,
rather than modify all the mechanisms that use the
CWND, e.g. fast retransmit, we track an equivalent of
the CWND—a count of the packets allowed in-flight
in one RTT.

2. Protocol deployability challenges: For deployability,
we would rather only have to modify the sender, treat-
ing receiver changes as an optimisation. But we be-
lieve the protocol we need for comparing one-way delay
measurements cannot work unless new TCP receiver
behaviour can be negotiated.

Invented solutions: For example: i) We propose a linear
progression to derive the inter-packet gaps that can be im-
plemented with integer arithmetic, in order to limit kernel
complexity; ii) We found an easy way to improve the pre-
cision of one-way delay measurements without tight timing
constraints on sent packets; iii) We discuss the possibility
of holding chirp identifiers as soft state in packet headers
rather than as hard state at the sender.

The rest of the paper is structured as follows: Section 2
explains chirping. Section 3 describes challenges in the im-
plementation and in protocol and algorithm design and why
we addressed them the way we did. Section 4 presents pre-
liminary results and discusses the open issues when using
chirping for congestion control. In Section 6 we draw con-
clusions and outline the further research that will be needed.

2. CHIRPING AS A BUILDING BLOCK FOR
CONGESTION CONTROL

A chirp is a logical grouping of N packets. Within a chirp
each packet has a higher rate than the previous one. Nor-
mally the bits within a packet of size P are sent at line-speed.
Therefore, different packet rates are realised by controlling
the inter-packet time gaps (Fig. 1). A chirp is thus a se-
quence of packets with decreasing inter-packet time gaps.

The average rate ravg of a whole chirp is the sum of all
the packet sizes within it, divided by the sum of all the gaps
between packet departure times, i.e. divided by the duration
of the whole chirp. When used for congestion control, all
data packets are within chirps. But the average rate of each
chirp is arranged to track the intended sending rate of the
congestion control algorithm.

Chirping should guarantee that the impact of probing for
higher rates on the network is limited. Packets with lower
and higher rates than the chosen average rate can be sent
over a brief duration. Thus one single chirp can probe for
a wide range of possible sending rates. The range of rates
probed for in a certain time can be controlled by the spread
of the inter-packet gaps, and the number N of packet in a
chirp.

By monitoring the relative queuing delays of every packet
in a chirp the available bandwidth can be estimated. The
nominal queuing delay of packet n is calculated using its

sending and receiving timestamps, respectively tssnd and
tsrcv, as follows:

qn = tsrcv − tssnd. (1)

The nominal queuing delay includes propagation delay that
stays constant for long periods or varies only slowly. We
are only interested in the growth in queuing delay between
packets ∆qn = qn − qn−1, which cancels out any constant
offset in each qn. If the sending rate of a sequence of packets
exceeds the available capacity of the bottleneck link, the
packets will experience increasing delay as the queue in the
network device grows. All subsequent packets of a chirp will
queue up behind each other (self-congestion) and one-way
delay will continue to increase.

Fig. 2 shows typical observations of queuing delay taken
from one of our simulation runs. It shows persistently in-
creasing values at the end of a chirp, starting from a certain
packet. To a first approximation, the sending rate of this
packet reveals the available capacity. The rest of the dia-
gram and a better approximation will be explained later.

Thus the available capacity is not only estimated based
on the queuing delay measurement of a pair of packets but
on several in a row. Moreover, those delays are self-induced
which means that several packets are sent at a too high
rate, to deliberately build up a queue for a short period of
time. Subsequently this characteristic delay signature can
be correlated with the pre-set inter-packet gaps sent-out. In
contrast to other delay-based estimation mechanisms the use
of self-induced congestion should be more robust to noise.

1 2 3 4 5 1 2543

tavg
t1

t2
t3

t4}

p-stream

Figure 1: Multi-rate probe streams with N=5.

The instantaneous available bandwidth can change over
the duration of a chirp, as competing flows vary their rate.
The pathChirp paper proposes a way to estimate a weighted
average of the available bandwidth over the duration of each
chirp. Instantaneously lower available capacity is detected
as an increase in queuing delay in the middle of a chirp,
which then decreases before the end (labelled excursion in
Fig. 2). To filter out noise, a such an excursion is included in
the available bandwidth estimation if it follows an increas-
ing trend for at least L packets. In addition, a change in
queuing delay is only counted as part of an increasing trend
if it is larger than 1/F of the maximum rise in queuing de-
lay in the current excursion. Following tests, the defaults
proposed by pathChirp for these variables are L = 5 and
F = 1.5. For the final bandwidth estimation the average of
the bandwidth estimation of each excursion weighted by its
duration is used. The pathChirp paper admits that more so-
phisticated approaches may be possible to improve accuracy
but initially we re-use their simple algorithm.

3. A CHIRPING IMPLEMENTATION IN THE
LINUX KERNEL

In order to realise chirping within TCP congestion con-
trol, we implemented a RAPID-like congestion control in

 140

 160

 180

 200

 220

 240

 260

 280

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

o
n

e
-w

a
y
 d

e
la

y
 [

m
s
]

packet number

estimated rate

initial delay
introduced by
previous chirp excursion

mostly
self-induced congestion

Figure 2: Queuing delay of a 32 packet chirp with
TCP cross traffic.

the Linux kernel version 2.6.26. This paper focuses on the
implementation of chirping as a building block for conges-
tion control based on per-packet send-out timing. We focus
less on the RAPID rate control algorithm itself, which re-
searchers might choose to swap out for their own algorithm.
The following four function blocks are needed to realise chirp-
ing within a congestion control protocol:

1. Feedback for one-way delay measurement: The
protocol extensions needed and different solution for
deployment are discussed in the following Subsection.

2. Rate estimation: The algorithm to evaluate the feed-
back information of one chirp based on pathChirp.
Pseudo code of the implemented algorithm is attached
in Appendix B.

3. Rate adaption: The chosen congestion control al-
gorithm evolves the average sending rate of the next
chirp based on its own algorithm using the available ca-
pacity estimated by the previous chirp. Furthermore
CWND should also be updated to a value that allows
the intended number of packets to be sent in one RTT.

4. Inter-packet gap calculation: To arrive at the cho-
sen average sending rate the inter-packet gaps for the
next chirp need to be recalculated. We developed our
own algorithm in order to simplify kernel implementa-
tion (see §3.3).

§3.2 gives an overview of the timing framework for sending
out packets and the structure of the implementation as con-
gestion control kernel module giving the interdependencies
between the components.

3.1 Sender-side Delay Measurement based on
TCP Timestamp Option

The precision of our measurements does not rely on the
time-gaps between packets conforming exactly to the pre-
calculated chirp time-gaps. Instead, we timestamp a packet
when it is actually sent and use this information for any
further calculations. So even if a packet experiences delay
elsewhere in the lower layers of the sender, the algorithm is
designed to be robust, as long as all the actual sending gaps
decrease within a chirp.

We chose to locate all timing analysis with the timing con-
trol that must naturally sit at the sender-side. We only gave
the receiver the task of feeding back time stamp information

for the delay measurements. We adopted TCP timestamps
(TS) for this purpose, which are activated by default in the
Linux kernel and in most modern operating systems. Table 1
shows the structure of the Option header which is added to
the TCP headers in either direction. This TCP option pro-
vides a 32 bit TS Value field, which is supposed to carry a
packet send-out timestamp. This gets echoed by the receiver
using the TS Echo Reply field in the other direction along
with the sending TS Value of the ACK itself. By compar-
ing an echoed timestamp with the current system time, the
sender can estimate the RTT.

Table 1: TCP Timestamp Option header.
Kind=8 10 TS Value (TSval) TS Echo Reply (TSecr)

1 1 4 4

When (mis)using the TCP Timestamp Option to estimate
the one-way delay, the send-out timestamp in the TS Value
field of the ACK is compared to the echoed timestamp of the
sender, as also used by TCP-LP [11]. The time gaps between
sent packets are reconstructed from the echo timestamps of
the current ACK and the previous ACK.

As chirping is only interested in changes in delay, clock
synchronisation is irrelevant. But the timestamps of sender
and receiver do need to use the same time resolution. The
TS Echo Reply is actually specified to just echo the 32 bits
in the TS Value no matter what those bits mean. Thus
the sender needs to know the receiver’s time resolution. In
the Linux kernel TCP timestamps normally have millisec-
ond resolution. To recognize increases in delay in a high-
speed scenario this resolution is not sufficient. Thus to
use chirping with TCP Timestamps in the Linux kernel a
higher resolution and some kind of resolution negotiation
are needed. The Linux kernel provides so-called high reso-
lution timers (hrtimers) with nanosecond resolution. This
gives sufficiently small inter-packet gaps for today’s network
speeds and negotiation would allow scaling to higher speeds
in future.

To estimate one-way delay we need to associate the sent
and received timestamps of one packet together. But the de-
layed ACK mechanism [3] confuses matters. Missing ACKs
are not a problem—rate estimation could be done with only
the ACKs in a chirp that are available. The problem with
delayed ACK’s is that the TS Echo Reply is supposed to
reflect the TS value of the oldest packet it acknowledges,
not the most recent (in order to give a conservative estimate
for the Retransmit Time Out). Then the Echo Reply times-
tamp in an ACK is typically not the sending time of the
packet that triggered the ACK, but that of an earlier packet
instead.

Delayed ACKs are on by default in the Linux kernel and
no protocol is available for a TCP sender to get the receiver
to deactivate them. In our implementation we have manu-
ally deactivated delayed ACKs receiver-side. But if chirping
proves useful, a negotiation protocol at flow start could turn
off delayed ACKs.

However, given delayed ACKs serve a purpose, rather than
deactivating them it would be better to negotiate alterna-
tive timestamp semantics. Ideally for more precise one-way
delay measurement, as well as a sender timestamp, the re-
ceiver would timestamp the packet on reception and echo
both sent and received timestamps in an ACK. This would

Socket interface

Network device driver

Application

tcp_v4_do_rcv

tcp_rcv_established

tcp_ack

tcp_cong_avoid

tcp_snd_ack

tcp_send_delayed_ack

tcp_data_queue tcp_sendmsg

tcp_push

tcp_write_xmit

tcp_transmit_skb

tcp_v4_do_rcvip_local_deliver
IP

tcp_min_cwnd

tcp_cwnd_down

tcp_fastretrans_alert

Block when locked

Timer

handling

tcp_chirping_timer
tcp_push pending_frames

tcp_reset_timer

tcp_chirping_set_timer

1

2

3

data to send (but blocked)

timer expires

reset timer

Figure 3: Changes in the TCP network stack.

intrinsically associate send and receive timestamps for the
same datagram in one ACK. Experiments using our testbed
to investigate how much this would improve bandwidth es-
timation are work-in-progress.

In our current implementation we remember the start of
every chirp to keep chirp analysis synchronised even when
e. g. ACKs are lost. To store less state at the sender in future
we would like to attach this information—a chirp ID—to
the packet header itself. One possibility is to exploit the
opaque semantics of the 32 bit TCP timestamp option TS
Value field. If we placed a chirp ID in this field, it would
be blindly echoed at receiver-side. The alternative of a new
TCP option would be cleaner, but would raise deployment
issues.

Two of these new protocol designs—timestamp resolu-
tion and disabling delayed ACK’s—could be implemented
with negotiation during the connection handshake. Adding
a chirp ID and adding a receive timestamp require further
more considered protocol design.

To enhance accuracy, hardware time-stamping can be used.
With Hardware timestamping the TSval field of the TCP
Timestamp Option header is rewritten by the network inter-
face device just before sending the packet. The same mech-
anism is often used with IEEE 1588-2008/IEEE 802.1AS
Time Synchronization Messages which are already supported
by a large number of network cards. The Linux kernel pro-
vides an interface to activate hardware timestamping.

3.2 Implementation Structure
As intended by the Linux kernel design we implemented

the chirping algorithms based on the kernel congestion con-
trol module interface. Chirping requires controlled timing of
each packet send-out time, so we introduced an additional
TCP timer by using the kernel TCP timer framework. All
changes are displayed in Fig. 3. When new data are available
the send-out is blocked (1) until the chirping timer expires
(2). Whenever a packet is sent, the next inter-packet gap is
obtained to reset the timer (3). As every single packet sent-
out is triggered by a timer interupt this design will lead to
an increased number of context switches between user and
kernel space that can slow down the system. We plan to
further investigate this and the impact of other processing
delays in a high-speed testbed. But we assume that in future
the send-out timing can be realized completely in hardware
if the use of chirping for congestion control can be shown as
a promising approach.

The simplified pseudo code for the three methods imple-

mented in the congestion control module realising the chirp-
ing algorithm is displayed below. cong_avoid and min_cwnd

are methods already intended for congestion control by the
Linux kernel module interface. With reset_timer we ex-
tended the congestion control module interface with a new
method. min_cwnd is called when a loss event occurs. In
this case we halve the rate, recalculate the inter-packet gaps
and start a new chirp. The mechanism to ensure that this
is only done once for every recovery event is not shown in
the pseudo code.
cong_avoid is called for every ACK packet received as it was
originally intended to open the CWND. We use it to store
the chirping feedback information and adapt the average
sending rate for the next chirp when feedback information
of a whole chirp is available. First, the current available rate
is estimated by estimateRate(). Then the congestion con-
trol algorithm to determine the new average sending rate is
called. In a third step the new inter-packet gaps are calcu-
lated.
Finally, this new send-out pattern will be adopted in re-

set_timer() in the next chirp. reset_timer() is called
whenever a packet is sent out. It returns the next value that
the chirping timer should be set to.

Algorithm 1 Chirping congestion control module.

cong avoid(): {called for every ACK}
remember one-way delay
remember reconstructed send-out inter-packet gap
update CWND
if last packet of chirp then

gapest = estimateRate() {est. available bandwidth}
gapavg = adaptRate(gapest) {new average rate}
calculate new inter-packet gaps with Eqn. 3

end if

reset timer(): {called for every data packet send}
if last packet of chirp then

start new chirp
remember/increase chirp identifier

end if
return next inter-packet gap

min cwnd(): {called for every recovery event after loss}
gapavg = 2 ∗ gapavg {= halve ravg}
recalulate inter-packet gaps with Eqn. 3
start new chirp

3.3 Algorithm for Inter-packet Gap Calcula-
tion

Our implementation is fully based on inter-packet time
gaps instead of rate. Initially we assume equal sized packet
which is usually the case when sending a stream of data
without blocking. If packets cannot be sent continuously, be-
cause the application is blocking for data, usually the avail-
able bandwidth cannot be fully used anyway and bandwidth
estimation based on chirping might not be appropriate.

To keep the Linux implementation as simple as possible,
the chirp size N must be set to a value that is an integer
power of two. Initially in our implementation it is hard-
coded at 32 (= 25), given experiments in [9] recommended
N = 30. To simplify kernel calculation effort, we calculate
the time gap sizes using a harmonic progression of rates of
slightly wider range than the geometric progression of [9].

 0

 1

 2

 3

 4

 5

 6

 0.5 1 1.5 2 2.5 3

p
e

r-
p

a
c
k
e

t
ra

te
 [

M
b

p
s
] Chirping at sender-side

start-up phase chirp

 0

 1

 2

 3

 4

 5

 6

 0.5 1 1.5 2 2.5 3

p
e

r-
p

a
c
k
e

t
ra

te
 [

M
b

p
s
]

Time [s]

Chirping at receiver-side

chirp

Figure 4: Per-packet rate of one continuous RAPID
transfer with 32 pkt/chirp over an 1Mbit/s link.

Then the gap size before the i-th packet can be calculated
by the simple linear decrease of

gapi = gapi−1 − gapstep = gapi−1 −
2gapavg

N
(2)

Using this would cause the ith gap to be

gapi =
2gapavg

N
(N − i+ 1) (3)

with i = 1...N − 1 and gap0 = gapavg. With this formula
pairs of gaps from each end of the chirp can be regarded as
grouped to 2∗gapavg besides gap1 and gap2 as we do not use
the maximum range for the high rates. Thus this calcula-
tion leads to a slightly lower average rate than the estimated
one and to a probing range from 1

2
ravg to N

4
ravg. An ex-

ample for the resulting per-packet rate is shown in Fig. 4.
The upper diagram shows the per-packet send-out rates of
chirps of a RAPID connection probing around the bottle-
neck capacity of 1Mbit/s on an empty link with a probing
range of 0.5–6Mbit/s. Fig. 4 also shows the Slow-Start-like
phase proposed for RAPID congestion control. Details of
how RAPID uses chirping during SlowSstart are relegated
to Appendix A.

4. PRELIMINARY RESULTS
We have been running simulation with the IKR Simulation

Library [7] and the Network simulation Cradle (NSC) [8].
This enabled us to use the kernel code within simulation
components. Today, the NSC can handle Linux kernel code
only up to version 2.6.26. We are planning to port our im-
plementation to a newer version and run real-life tests in
an environment up to 10Gigabit/s. The current simulation
results are limited in speed due to the restrictions of the
timing in the NSC to a milliseconds resolution as hrtimers
are not yet available. Due to this limited time resolution
our scenarios are based on a 1Mbit/s bottleneck link with
larger access bandwidth of the sender to send packets with
a probing rate up to 12Mbit/s.
Fig. 4 also displays the receiver-side per-packet rate which is
limited by the bottleneck bandwidth of 1Mbit/s. Note with
this simulations there is 100ms one-way transmission delay
on the link. All packets sent with a higher rate than the

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60

T
hr

ou
gh

pu
t [

M
bp

s]

RAPID
TCP

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60

Q
ue

ue
 le

ng
th

Time [s]

Figure 5: Throughput of RAPID and TCP cross
traffic starting at 10 seconds.

maximum bottleneck speed build up a queue in the router.
Even when the next chirp starts with lower per-packets rates
it takes a while until the queue empties again. Those initial
delays can also be seen in Fig. 2.

4.1 RAPID Congestion Control
Our investigation of the RAPID-like implementation dis-

covered several problems in the design of RAPID congestion
control. This knowledge can be used to get a better under-
standing of how to design a robust congestion control based
on chirping.

RAPID congestion control directly uses the available band-
width estimated by a previous chirp as ravg. In common
with many purely delay-based approaches, RAPID cannot
compete for an equal share of capacity with loss-based ap-
proaches, such as standard TCP. By design RAPID only
aims to scavenge any bandwidth they are not already using.
Nonetheless, RAPID does build up some additional short-
time delay in the router queues, which influences the TCP
flow throughput.

For our implementation, we propose that all inter-packet
gap sizes, which have been calculated with nanosecond res-
olution as a preparation for a high-speed testbed usage,
should be rounded to the next higher value when setting
a millisecond resolution timer for NSC usage. This will
slightly underestimate the available rate but avoids queue
build-up.

In the general case when a queue builds up because of
permanent overestimation this will not be recognised by the
delay measurements within a chirp, as the queue stays con-
stant or decreases while sending packets with lower rates.
Thus RAPID congestion control will not recognise its own
impact on long-term queuing until a loss occurs. We expect
a more sophisticated solution can be found here to get close
to the right value without risking overestimation.

Regarding the case in RAPID design where multiple RAPID
flows are competing, there needs to be some additional mech-
anism to converge to the intended bottleneck shares. With-
out such a mechanism the RAPID flow which has already
achieved a larger sending rate will get earlier notification
if spare capacity becomes available. In [9] it is proposed
to equalise the rates to which RAPID senders converge by

introducing a parameter τ , as given in Equation 8 in Ap-
pendix A.

This is supposed to lead to an equal rate in the same
amount of time (τ ms) for competing RAPID flows with dif-
ferent starting rates. Of course RAPID can only converge
to an equal rate distribution if τ is set to the same value
for all competing RAPID connections. This is very sen-
sitive to variations in different implementations. Further-
more, if τ is larger than the time needed to send one chirp,
the proposed formula will allow an increase larger than the
estimated available rate. This will disturb competing flows
strongly. Consequently in our simulation in a low speed sce-
nario this approach led to very large inter-packet gaps and
respectively a very low average rate of the competing flow.
In fact one RAPID flow ended up sending only 32 packets
over several seconds as it could not adapt within one chirp.

Fig 5 shows the throughput of a RAPID connection and a
TCP connection competing for 1Mbit/s bottleneck capacity
with a drop-tail queue of 50 packet queue size and a base de-
lay of 200ms per round trip. The TCP connection started
10 seconds after the RAPID connection and goes on until
20Mbit of data has been transmitted. Due to the intro-
duction of the intra-protocol convergence factor τ (here set
to 268ms for implementation reasons) the RAPID flow does
not back off completely but whenever a loss event occurs
the bandwidth share between the TCP and the RAPID flow
changes. After termination of the TCP connection, RAPID
converges slowly to the maximum rate. Without smoothing
by using the τ value, the results are quite unpredictable.

We recommend that all implementations should not be re-
quire identical parameter values if dependencies on network
characteristics exist, but instead the parametrisation should
be made adaptive. We also argue that RAPID congestion
control should be characterised as a scavenging approach
emulating less than best-effort service, rather than an algo-
rithm intended to compete on a par with TCP congestion
control. A more scalable congestion control should not only
rely on chirping information but use this fast feedback infor-
mation to adapt the increase of the sending rate more appro-
priately to the actual network state. The rate adaption itself
still needs to follow a scheme that can lead to convergence
in capacity sharing with transfers using different congestion
control mechanisms or different parametrisations.

4.2 Next Steps
Future work is still required to investigate the impact of

short term probing delays on the queue burstiness and the
influence of a large aggregation of probing chirps on the
base queue length. We expect that every single chirping
transfer should still be able to correlate its own send-out
pattern with the received delay measurements. In return
the chirping information can be used to reduce the conges-
tion control overshoot and respectively the maximum queue
length while still providing a fast acceleration in high speed
environments.

Using chirping with retransmission or if too few packets
are available needs further investigation, as well as issues
on reordering, idle periods or incomplete feedback informa-
tion. Furthermore, adaptation of the chirping parameters
themselves, e.g. a selection of the chirp size N based on the
sending rate or observed changes in rate, could lead to higher
accuracy of the chirping information.

5. RELATED WORK
Next to RAPID congestion control, NF-TCP [2] is another

proposal to use chirping for congestion control in combina-
tion with ECN-based congestion avoidance techniques. In-
stead of sending the data packets grouped in probing streams,
NF-TCP uses separate probing packets to define a new send-
ing rate. In return NF-TCP backs off early based on low-
priority ECN-markings to remain TCP-friendly. The imple-
mentation of chirping was realized in user-space.
Regarding the implementation of rate-based congestion con-
trol approaches [4] proposes the reintroduction of ACK-clocking
and window-based rate adaption to overcome implementa-
tion complexity. We cannot use this approach as an exact
per-packet timing is needed. A similar approach to our im-
plementation on timer-based packet spacing can be found for
TCP Pacing [12] [10] [1]. PSPacer [15], as another reference
to realize inter-packet spacing, follows a different approach,
where so-called PAUSE packets are interleaved to increase
the sending gaps between two data packets. [13] uses TCP
Pacing and the packet-pair technique to improve the TCP
start-up. PacedStart [6] introduced a sent-out packet spac-
ing in Slow-Start for bandwidth estimation. Hybrid Slow
Start [5] uses the fact that packet bursts in Slow-Start get
paced out in the network by monitoring the ACK train du-
ration.

6. CONCLUSION AND OUTLOOK
In this paper we presented what is needed to implement

chirping as a building block for congestion control in the
Linux kernel. The nanosecond resolution provided by kernel
hrtimers is sufficient for today’s speed, but initial negotia-
tion about timer resolution and either receive timestamping
or non-delayed ACKing needs to be added to the protocol
design.

We ran initial experiments using our chirping implementa-
tion driven by the RAPID congestion control algorithm. We
can already conclude that chirp parameters ought to adapt
to prevailing conditions and that the available bandwidth
estimates from chirping should be used in addition to other
network state information. We have also noted that RAPID
congestion control would be better characterised as a scav-
enger protocol, as it is not designed to take capacity share
from protocols like NewReno that are loss-based.

We are planning to further study the impact of chirp-
ing on burstiness and queue length in a high-speed testbed.
This will also provide insight into the dependency of the ac-
curacy of the chirping information on timestamp resolution.
As chirping provides faster feedback than today’s solely loss-
based mechanisms, our goal is to use the available bandwidth
estimates to enable more scalable rate adaption with mini-
mal overshoot.

7. REFERENCES
[1] A. Aggarwal. Understanding the performance of tcp pacing.

In Proc. 2000 IEEE INFOCOM Conference, pages
1157–1165, 2000.

[2] M. Arumaithurai, X. Fu, and K. K. Ramakrishnan.
NF-TCP: Network Friendly TCP. In 17th IEEE Workshop
on Local and Metropolitan Area Networks (LANMAN
2010), May 2010.

[3] R. Braden. Requirements for internet hosts –
communication layers. RFC 1122, IETF, October 1989.

[4] S.-H. Choi and M. Handley. Designing TCP-Friendly
Window-based Congestion Control for Real-time

Multimedia Applications. In Inproceedings of PFLDNeT,
2009.

[5] S. Ha and I. Rhee. Hybrid Slow Start for High-Bandwidth
and Long-Distance Networks. In PFLDNeT’08, 2008.

[6] N. Hu and P. Steenkiste. Improving TCP Startup
Performance using Active Measurements: Algorithm and
Evaluation. In Proc Int’l Conf on Network Protocols
(ICNP’03). IEEE, November 2003.

[7] IKR, University of Stuttgart. IKR Simulation and
Emulation Library, December 2009.
http://www.ikr.uni-stuttgart.de/Content/IKRSimLib/.

[8] S. Jansen and A. McGregor. Simulation with Real World
Network Stacks. In Proc. Winter Simulation Conference,
pages 2454–2463, 2005.

[9] V. Konda and J. Kaur. Rapid: Shrinking the
congestion-control timescale. In INFOCOM 2009, IEEE,
pages 1 –9, apr. 2009.

[10] J. Kulik, R. Coulter, D. Rockwell, and C. Partridge. Paced
TCP for High Delay-Bandwidth Networks. In IEEE
Workshop on Satellite Based Information Systems, 1999.

[11] A. Kuzmanovic and E. W. Knightly. Tcp-lp: low-priority
service via end-point congestion control. IEEE/ACM
Trans. Netw., 14:739–752, August 2006.

[12] D. Lacamera. TCPPacing.
http://danielinux.net/index.php/TCP Pacing, October
2010. Website.

[13] C. Partridge, D. Rockwell, M. Allman, and R. K. J. P.
Sterbenz. A Swifter Start for TCP. Technical report, BBN
Technologies, 2002.

[14] V. J. Ribeiro, R. H. Riedi, R. G. Baraniuk, J. Navratil, and
L. Cottrell. pathchirp: Efficient available bandwidth
estimation for network paths. In In Passive and Active
Measurement Workshop, 2003.

[15] R. Takano, T. Kudoh, Y. Kodama, M. Matsuda, H. Tezuka,
and Y. Ishikawa. Design and evaluation of precise software
pacing mechanisms for fast long-distance networks. In In
Proceedings of PFLDNet 2005, 2005.

APPENDIX

A. RAPID CONGESTION CONTROL
RAPID congestion control is designed to acquire “the available

bandwidth within only a few RTTs”. Furthermore, it aims to
“achieving fairness among co-existing RAPID transfers” and “re-
maining TCP-friendly” [9]. The following enumeration will give
an short overview about the proposed alogorithm:

1. Rate-based packet transmission (at the sender): Send
multi-rate probe streams of N packets with decreasing inter-
packet gaps of ti = P/ri−1 with t0 = tavg and

ravg =
N − 1

1

r1
+ 1

r2
+ ...+ 1

rN−1

(4)

for all i > 1, ri > ri−1.

2. Available Bandwidth (AB) estimation analysis (at
the receiver): Implement pathChirp bandwidth estima-
tion based on self-induced congestion. If qi is the queuing
delay experienced by the i-th packet and

qk = 0, if rk ≤ AB qk > qk − 1,otherwise, (5)

the available bandwidth estimation ABest will be given by
the small rate where self-incuded congestion can be ob-
served. ABest of the most recent p-stream will be forwarded
to the sender in every next ACK.

3. Transmitting in a non-overloading responive man-
ner: Set ravg = ABest for next p-stream to not exceed bot-
tleneck capacity but simultaneous probing for de-/increase.

4. Setting [r1, ..., rN − 1] (speeding up the search pro-
cess): Implement multiplicative relation

ri = mi−1 ∗ r1 (6)

with 1 < i < N and

r1 =
mN−1 − 1

(N − 1)(m − 1)mN−2
ravg (7)

with N = 30 and m = 1.07%. These values yield to a range
of probing rates from r1 ≈ 0.45∗ravg to rN−1 ≈ 3.22∗ravg.

5. Achieving a Quick-yet-Slow-Start: Send only a single
p-stream over the first four RTT’s with N = 2, 4, 8, 16 and
m = 2 and initialize ravg to 100Kbps. This can probe for
up to 3342Gbps in 4 RTT’s (and is not more aggressive than
other Slow-Start implementations).

6. Dealing with packet loss: Reduce ravg by multiple of 0.5
after loss recovery.

7. Bias due to rate-proportional feedback frequency:
Equalize the rate at which RAPID senders converge toABest
by

ravg = ravg +
l

τ
(ABest− ravg) (8)

where l is the duration of the most-recent p-stream, which
is given by: l = N∗P

ravg
. τ represents a common time interval

over which any RAPID flow should converge to an increase.
τ is proposed to be set by default to 200ms.

B. AVAILABLE BANDWIDTH ESTIMATION
The implementation of the bandwidth estimation (based on

pathChirp [14]) can roughly be described by the following pseudo
code where q a vector of queuing delay of a chirp and gap a
vector of the recalculated inter-packets gaps:

estimateRate(q, gap) {
for each packet do

if qi not increasing or less than qmax/F then
remember as ’not an excursion’
set new estimation gapest to gapi
if previous excurison was smaller than L then

remember all packet as ’not an excursion’
end if

else
update qmax

end if
end for
set gapavg to gapest
for each packet do

if part of excursion then
gapavg+ = gapest

else
gapavg+ = gapi

end if
end for
gapavg = gapavg/N
}

This goes inline with the mechanims described in [14] but leads
to any easier implementation.

