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Abstract—This paper demonstrates the performance of PERT,
a new TCP congestion control, for video streaming. PERT stands
for Probabilistic Early Response TCP. As a delay based protocol,
it measures the delay at the end host and adjusts the congestion
window accordingly. As our NS-2 simulation results show, the late
packet of the video streams are greatly decreased when applying
PERT in heterogeneous environment. Furthermore, our Linux
live streaming test indicates that PERT is able to reduce the
playback glitches, when high resolution video is delivered over
an end-to-end link with latency and packet loss.

I. I NTRODUCTION

Data transfers over Internet are increasingly dominated by
video data transfers. Cisco forecasts that video transferswill
account for 60-90% of network traffic by 2014 [15]. Recent
studies indicate that a large portion of Internet streamingmedia
in current Internet is delivered over HTTP/TCP. To achieve
satisfactory quality of service (QOS), video and audio data
are supposed to be delivered before playback or buffered if
they arrive earlier. However, current TCP is not suitable for
video streaming applications due to its insistence on reliable
transmission and inability of real-time data delivery. Moreover,
in today’s Internet, many other services like web surfing, FTP
download, as well as P2P file sharing are also competing for
the limited bandwidth. This makes it more difficult for TCP
to meet the demands of smooth video streaming.

Motivated by such demand on multimedia applications over
the Internet, protocols for video streaming have been explored
by many researchers. TFRC (TCP Friendly Rate Control) [1]
and its variant [2] have been proposed to maintain long-term
TCP fairness while maintaining smooth transmission rates.In
[3], Wang et al. analytically studied the TCP performance
for multimedia streaming. They built discrete-time Markov
models for both constrained and unconstrained streaming.
Smaller than MSS-sized packets have been used in CBR
workloads to exploit the TCP ACK counting mechanism,
and thereby reducing the TCP transport delay and its impact
on congestion window variations in [4]. In [5], the authors
compared Linux implementations of NEWRENO, H-TCP and
CUBIC and found dynamic latency fluctuations induced by
each TCP variant. They noticed that CUBIC induces larger
latency than the other two when concurrent TCP flows take
place. All of these studies explore the possibility of employing
TCP like congestion control even for real-time video delivery.

In this paper, we explore the performance of a new TCP con-
gestion control - PERT and compare it with other TCP variants
like RENO and CUBIC for real-time video transmission. Here
RENO is short for RENO-SACK. We study if the delay-based
PERT mechanism can provide better support for video delivery
than RENO and CUBIC. We study this problem through NS-2
based simulations and real live video transmission tests ona
testbed. Both our NS-2 simulation and Linux test results show
that PERT provides significant improvement on video viewing
quality when compared to RENO and CUBIC.

The rest of the paper is organized as follows. In section
II, we describe our previous work on PERT to make this
paper self-contained. In Section III, we present our extensive
NS-2 simulations and performance comparison among PERT,
RENO and CUBIC. In Section IV, we explore the feasibility
of applying PERT to video streaming in the real world. Finally,
we conclude the paper with a discussion of possible extension
of PERT in section V.

II. BACKGROUND

PERT emulates the behavior of AQM/ECN at the end host
[6]. As a delay based protocol, PERT learns about network
congestion by measuring delays at end host, and probabilisti-
cally reduce the congestion window as delay increases. Fig.1
shows PERT’s response probability curve, whereTmin and
Tmax are two thresholds, andPmax is the probability of
response atTmax.

However, delay based protocols lose to loss-based protocols
in heterogeneous environments where multiple congestion
control algorithms may be employed. In current Internet, any
new congestion control algorithm has to be able to coexist with
prevailing TCP congestion control algorithms. To address this
problem, PERT was redesigned to be adaptive to heteroge-
neous environments [7]. PERT increases congestion window
faster than TCP at low delays to compensate for early response
at higher delays, in order to equalize the bandwidth.

PERT basically operates in 3 modes. When the observed
delay is very low (or below the minimum threshold), it
assumes that it is operating in a ”high-speed” mode and
increases the window fast to fill the link. In this mode, the
window increase factorα in W = W + α, is increased linearly
until a maximum value ofαmax (currently set to 32). When the
observed delay is above a TCP-compete threshold (currently



Fig. 1. Response probability vs. Smoothed RTT

set to 0.65*maximum observed queuing delay), PERT assumes
it is operating in a heterogeneous environment and increases
the window every RTT additively withα = 1+p′/p, wherep′

is the early response probability and p is the observed packet
loss rate. When the observed delay is above the minimum
threshold, but below the TCP-compete threshold, PERT as-
sumes it is operating in a ”safe” mode and increments window
additively withα = 1. In addition, PERT reduces the window
conservatively in the early response phase,W = W ×(1−β),
where β = q′/(q′ + q), where q′ is the estimated queuing
delay at early response phase andq is the observed maximum
queueing delay. It is observed that this leads toW = W/2
upon a packet loss.

Simultions and real-network evalutions have shown that, (a)
a single PERT flow can scale to high-speed links of up to
10Gbps, (b) PERT can compete with TCP in heterogeneous
environments and (c) still benefit from near-zero packet loss
rates and very low queuing delays when operating in homo-
geneous environments. Details of PERT design can be found
in [7], [8].

0 200 400 600 800 1000 1200
Queue Position

1

10

100

1000

10000

100000

Fr
eq

ue
nc

y

Frequency vs. Queue Position
PERT
TCP

Fig. 2. Frequency vs. Queue Position

PERT sends more packets at lower delays and sends fewer

packets at higher delays while being fair to TCP. This behavior
is shown in Fig. 2. Fig. 2 shows the queuing frequency at
certain queue length when 50 PERT and 50 RENO FTP flows
are competing on a 150 Mbps link with 60ms delay. It is
observed that PERT enqueues more packets earlier in the
queue, and less packets later, and as a result experiences lower
losses. We expect this behavior of PERT to be beneficial for
video transfers and this paper investigates this issue through
simulations and experiments over a testbed.

Recent work [3] has showed that TCP can be used for
transmitting live video as long as the required video stream
rate is a fraction of the average bandwidth achievable by a
single TCP flow. Both constrained (data is available from
a live stream) and unconstrained (data is available from a
prerecorded or stored source) streaming were considered.
Extensive simulations have shown that TCP can be adequate
if the average TCP flow rate is about twice that of the required
video stream rate for constrained streaming. A similar study
by [14] has shown that TCP can function adequately with
a 1.5 higher bandwidth than required stream rate in uncon-
strained streaming and that Vegas could support unconstrained
streaming better than TCP NEWRENO. The question we try to
answer in this paper is if a delay-based protocol such as PERT
can support constrained video streaming at a lower available
bandwidth than two times of the required video stream rate as
required by RENO.

We carry out extensive NS-2 based simulations and live
video transmissions on a real network testbed within the lab.
We present data from both simulations and the emulations to
show that PERT indeed provides better support for live video
transmission than RENO and CUBIC.

III. NS-2 SIMULATION

A. Experiment Setup

To evaluate the performance of PERT and other TCP
congestion control variants, we setup a dumbbell topology.
In such a network environment, multiple TCP streams have
sufficient bandwidth over access links separately but compete
for the limited bandwidth over the bottleneck link between the
two routers.

Table. I shows our experiment parameters in NS-2 simu-
lation, we set the access links bandwidth to 10 Mbps and
bottleneck link bandwidth to 25 Mbps, and CBR bit rate to
300 Kbps. Moreover, TCP packet size is set to 200 or 1,000
bytes, router buffer size to 150 packets, and video length to
7,000 seconds. We keep the above parameters constant to get
rid of their impacts on TCP video streaming performance.
We take HTTP and FTP flows as the background traffic,
RENO and CUBIC as the control group. As a loss based
protocol, RENO additively increases the congestion window
by one MSS (Maximum Segment Size) every RTT (Round
Trip Time), cuts down the congestion window by half on
a packet loss and decreases it to one MSS on a timeout
event. As for CUBIC, the congestion window growth follows
a cubic function in terms of the elapsed time since the last
loss event. To emulate a realistic network, we vary link delay



TABLE I
NS-2 SIMULATION EXPERIMENT SETUP

Parameter Value
CBR Flows # 20 - 35
CBR Senders PERT/RENO/CUBIC
CBR Recvers RENO
CBR Rate 300 Kbps
FTP Flows # 20 - 35
FTP Senders RENO
FTP Recvers RENO
HTTP Flows # 300
HTTP Senders RENO
HTTP Recvers RENO
Video Length 7,000 secs
Packet Size 200/1,000 Bytes
Buffer Size 150 Packets
Access Link Bandwidth 10 Mbps
Access Link Delay 5 - 15 ms
Bottleneck Link Bandwidth 25 Mbps
Bottleneck Link Delay 15 - 45 ms
Round Trip Time 50 - 150 ms
Random Seed 0 - 19

(RTT) by altering the access link delay and bottleneck link
delay. And the RTT equals four times access link delay plus
two times bottleneck link delay. We also vary the number of
CBR streams and the number of FTP streams from 20-35 and
keep the number of HTTP streams constant at 300 to achieve
different TCP throughputs. Finally, we run the simulation 20
times with seed values of 0-19 to randomize the start time of
the TCP streams, in order to statistically reduce its effecton
the experiment results.

B. Simulation Results

1) Parameters Exploration: In this section, we explored
the experiment parameters to study the performance of PERT
under different conditions. As [3] concludes, the performance
of TCP generally provides good streaming performance when
the T/µ is roughly 2.0, where T is the achievable TCP
throughput andµ is the video bit-rate. To demonstrate PERT’s
performance under different T/µs, we pick sample data with
certain CBR stream numbers such that T/µ falls in continual
ranges of [1.0 - 1.2], [1.2 - 1.4], [1.4 - 1.6], [1.6 - 1.8], [1.8 -
2.0], as Fig. 3 shows. Under such T/µ distribution, we also plot
the bandwidth allocation among CBR, FTP and HTTP streams.
As Fig. 4 shows, as the number of CBR streams increases, the
total bandwidth of CBR streams increases proportionally, and
the rest of bandwidth is taken by FTP streams and HTTP
streams.

As Fig. 5 shows, the fraction of late packets for PERT CBR
streams becomes smaller as T/µ increases from1.0 to 2.0. It is
clear that the late packets can be reduced by giving CBR traffic
more bandwidth. Fig. 5 also indicates that the fraction of late
packets with PERT drops sharply when T/µ is increased from
1.0 to 1.4, and stays almost the same as T/µ ranges from1.4 to
2.0. Moreover, as the RTT increases from 50ms to 150ms, the
fraction of late packets goes up. This agrees with our intuition
that it is more difficult to achieve satisfactory performance
for video streaming in higher delay networks (retransmissions
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may not arrive in time, for example).
Studies show that the video viewing quality is closely

related to the fraction of late packets. We define that a CBR
stream is successful as long as the fraction of late packets is
below 10−4, with only a few seconds of startup delay as the
paper [3] did. Under such an evaluation metric, we validate
PERT’s performance and compare with others in the aspect of
delivered video quality.

2) Performance Comparison: In this part, we compare the
performance of PERT, RENO and CUBIC for video streaming
in the same parameter space that we described in the last
section. As our simulation results indicate, PERT outperforms
RENO over all T/µ, loss rates and start-up delays, and CU-
BIC over low T/µ, high loss rates and strict start-up delay
constraints.

First, we demonstrate the performance in terms of fraction
of successful CBR streams that we defined before. Fig. 6
indicates that as T/µ increases, the fraction of successful
CBR streams goes up. In the high T/µ range [1.4 - 2.0], the
percentage of successful CBR streams is high and changes
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Fig. 5. Fraction of late packets vs. T/µ with PERT

slightly as T/µ increases. While in the low T/µ range [1.0 -
1.4], the performance drops drastically as T/µ decreases. In
comparison, PERT and CUBIC perform better than RENO.
When packet size is moderate - 1000 bytes, PERT performs
better than CUBIC in the low T/µ range but has similar
performance as CUBIC in the high T/µ range. Fig. 6 also
shows the impact of packet size, we consider two packet sizes
of 200 and 1000 bytes. It is observed that the fraction of
successful streams is higher with smaller packet sizes, in all
T/µ ranges.

1.0-1.2 1.2-1.4 1.4-1.6 1.6-1.8 1.8-2.0
T/u (Start-up Delay 10 secs)

0

10

20

30

40

50

60

70

80

90

100

110

Fr
ac

tio
n 

of
 S

uc
ce

ss
fu

l C
BR

 S
tr

ea
m

s 
(%

)

1000

1000
1000 1000 1000

200

200 200 200 200

Fraction of Successful CBR Streams vs. T/u
PERT
RENO
CUBIC

Fig. 6. Fraction of successful CBR streams vs. T/µ over different packet
sizes

Fig. 7, 8 show that the percentage of successful CBR
streams vs. start-up delays in different T/µ ranges when three
different TCP congestion controls are employed in video
transmission. As T/µ increases, the CBR streams can achieve
higher throughput and lower packet loss rate. And as the start-
up delay goes up and the constraint becomes loose, more CBR
streams successfully are able to meet the streaming quality
requirement. These observations are consistent with the earlier
study [3].

In comparison, as Fig. 7 show, when the T/µ is in the low

range [1.0 - 1.4], the loss rate is relatively high, PERT achieves
the best performance, CUBIC is in the middle, and RENO is
the worst.
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Fig. 7. Fraction of successful CBR streams over T/µ 1.0-1.4

As Fig. 8 show, in the high T/µ range [1.4 - 2.0], PERT
and CUBIC are both superior to RENO, and especially when
the start-up delay constraint is tight (from 1 to 11 seconds). In
addition, when the start-up delay is greater than 11 seconds,
PERT and CUBIC achieve almost 100% success rate. In
other words, the T/µ constraint for satisfactory streaming is
improved from roughly 2.0 to approximately 1.4, by using
PERT or CUBIC.

Fig. 9 show that PERT generally performs better than RENO
and CUBIC, in the loss rate range of [0.04 - 0.06]. This
is because PERT reduces the congestion window by small
amounts ahead of packet loss and experiences fewer packet
losses [7], which brings more stable throughput and therefore
smoother video streaming.

IV. L INUX V IDEO STREAMING TEST

In order to test our Linux implementation of PERT, we
configured a testbed environment with the help of a network
emulator. Fig. 10 displays our testbed setup. Two PCs with
the same hardware and operating system, are connected to a
PC configured as a network switch, through a 10/100 Mbs
Ethernet link. The VLC[9] application is installed to stream
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Fig. 8. Fraction of successful CBR streams over T/µ 1.4-1.6

a video from the sender to the receiver. DummyNet [10] is
employed as the network emulator to create a more realistic
testing condition. It works on the switch to emulate buffering,
queuing delays and bottleneck link bandwidth.

Based on the testbed described above, we performed the
video streaming test with PERT, RENO and CUBIC. We set
the link bandwidth to15 Mbps, the link delay to45 ms, and
the queue length to500 kbytes on the bridge. Moreover, a
1080p version of the Avatar movie trailer is chosen as the
sample video, with file size of286.5 Mb and playback duration
of 3 minutes and30 seconds. VLC 1.1.4 works on both the
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Fig. 9. Fraction of successful CBR streams over loss rate 0.02-0.06

Fig. 10. Experiment computer platform end-to-end connected with network
emulator

server and the client end as the video streaming tool. The
codec of the video and audio are H-264 and MPEG 4 Audio
(AAC) respectively. As a high resolution movie, the video is
played at a frame rate of24 fps and the audio at a sampling
rate of 48, 000 Hz. This asks for video peak bit rate of25
mbps and audio bit rate of192 kbps. Besides, HTTP is chosen
as the application layer protocol, which takes advantage of
TCP on the transport layer. We employ different versions of
TCP during our experiments to measure their effectiveness at
streaming.



A. Test Results

To compare the effects of PERT, RENO and CUBIC on
the perspective of video viewing quality, we analysed VLC’s
playback logs, which record when and how if any glitch
happens during the video transmission. We play the same
video with the same setting20 times and count how many
times the events of late picture skipping and audio output
starving occur. When the video or audio frames are played but
not found in the client’s buffer, one of these events will occur.
They lead to playback glitches, VLC client buffering, user
waiting and therefore impair the viewing quality. As Table.
II shows, the playback experienced smaller number of late
picture skipping and audio output starving events when using
PERT instead of RENO or CUBIC as the TCP congestion
control.

TABLE II
V IDEO STREAMING PERFORMANCE COMPARISON

TCP Congestion Control PERT RENO CUBIC
Late Picture Skipping # (per playback) 5.5 33.5 30.5
Audio Output Starving # (per playback) 3.0 11.0 7.5
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Fig. 11. Congestion window in Linux Test

To confirm our observation, we plot the TCP congestion
window size with web100 [11] at the sending end during
playback in Fig. 11. We choose a period of90 seconds of
playback time at the end of the movie, since the streaming is
relatively stable during that time. And we track the congestion
window size every0.01 second. As Fig. 11 shows, the con-
gestion window size of PERT has fewer fluctuations than that
of RENO or CUBIC does. CUBIC increases the congestion
window fast and achieves sightly better performance than
RENO does, but still incurs large fluctuations. Therefore, the
throughput of PERT’s video streams are more steady and their
data frames are more likely to arrive before playback deadline.
This can explain the smaller number of late picture skipping
and audio output starving events we observed, when PERT is
employed as the TCP congestion control.

V. CONCLUSION AND FUTURE WORK

In this paper, we have demonstrated the performance of
PERT for on-demand video streaming. Our NS-2 simulation
experiments are performed in a heterogeneous environment,
where the background traffic is delivered by RENO. PERT
outperforms RENO and CUBIC in successfully delivering
video in constrained streaming scenarios we considered here.
Moreover, the real-life video streaming test confirms PERT’s
ability to improve video playback quality when comparing to
RENO and CUBIC. In the future, we will carry out more
evaluations, including comparisons against other protocols.
Further, our efforts will be devoted to deploy and measure
PERT in error-prone wireless networks.
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