
Enabling Renewed Innovation in TCP by
Establishing an Isolation Boundary

Umar Kalim‡+ Eric Brown+ Mark Gardner+ Wu-chun Feng‡

Department of Computer Science, Virginia Tech‡

Office of Information Technology, Virginia Tech+

{umar, brownej, mkg, wfeng}@vt.edu

ABSTRACT
The growth of the Internet has ushered in and established
the “Information Age.” However, its success has also ar-
guably increased the difficulty of incorporating innovative
changes that are needed to develop further functionality for
next-generation networked applications. From the transport
perspective, the desired functionality includes (1) support-
ing multiple network paths, (2) providing transport over hy-
brid networks (e.g., using both packet- and circuit-switched
networks), and (3) decoupling upper-layer services from end-
point naming semantics. The need for functionality — such
as transport composability — has been reiterated in recent
research and leads to an apparent dilemma: TCP, the ubiq-
uitous transport protocol, neither admits such functionality
in its present form nor does it seem possible to add it with-
out substantial modifications. Furthermore, radical changes
— whether through incompatible extensions or by creating
a completely new protocol — will not be easily accepted.

In contrast to the apparent dilemma, we argue that a
backward-compatible modification to TCP that supports in-
creased functionality is possible without incurring significant
burden in additional protocol exchange. The lightweight
mechanism, built upon a set of TCP options, establishes
an isolation boundary between TCP and the application.
The boundary separates an application data stream from the
TCP transport flow. Further, it provides for the establish-
ment of a control channel that allows additional capabilities
to be negotiated dynamically throughout the lifetime of the
communication. In short, the mechanism provides a simple
“hook” into TCP with which new features can be realized.
This increases the freedom to evolve TCP while maintaining
compatibility, thereby facilitating incremental adoption.

Categories and Subject Descriptors
C.2.2 [Computer Systems Organization]: Computer-
Communication Networks—Network Protocols

Keywords
Next Generation Networks, Transport Layer, Specification.

1. INTRODUCTION
Underneath virtually all networked applications, the Trans-

mission Control Protocol (TCP) busily delivers packets of
data. At our university, for example, TCP delivers over 2
TB per day just over the campus wireless network. Clearly,
TCP has been wildly successful. Its simplicity and ease of

implementation has resulted in wide adoption, and it has
materially contributed to the growth of the Internet [1].

Along with ubiquity comes increased expectations. Where
users were once content to simply transfer files between ma-
chines, now they expect the network to provide functional-
ity that TCP was never designed to support. For example,
users now expect the network to be seamlessly available on
whatever device they carry, wherever they carry it, and to
transparently switch between networks as they roam. They
want to take advantage of all available networks simultane-
ously for increased performance or reliability.

The need for greater functionality in TCP has been reit-
erated in recent research [2–15]. However, TCP neither sup-
ports such functionality nor does it appear that it can be
modified to support the new functionality in a backwardly
compatible way [4, 6, 7, 9, 11]. In the belief that radical
changes are required to extend its functionality, some re-
searchers advocate a clean-slate approach as the only path
forward [16–19].

TCP has been so successful that change will not be eas-
ily accepted. End users and network operators would bear
the majority of the burden of transitioning to a different
protocol, including assuming unknown risks; and although
users demand increased capabilities, they do not want such
change. Yet some change is necessary if increased function-
ality is to be realized.

We observe that application developers build extensions
to TCP as part of the application in an attempt to tackle
these challenges (e.g., transport composability proposed by
Kissel [5] and Habib [9]). This leads to a duplication of
effort. Alternatively we see proposals where extensions [8,
11] require applications to use custom libraries to exploit
maximum benefit from underlying services.

We argue that by the insertion of a simple “hook,” TCP
can be made significantly more extensible. Furthermore, it
is possible to do so in a backwards-compatible way such that
adoption can be incremental.

We build upon the work of Ford [6] and Iyengar [3] and in-
troduce a limited isolation boundary between TCP and the
application. The purpose of the limited isolation bound-
ary is to decouple an application’s data stream from the
underlying TCP transport flow to allow protocol designers
freedom to extend TCP to implement new functionalities.
The lightweight mechanism utilizes a set of TCP options,
referred to as the Isolation Boundary Options (IBOs), dur-
ing the connection setup phase, and provides for the creation
of a control channel that endpoints can use to negotiate ad-
ditional functionality, as appropriate, during the lifetime of



the connection. Since the presence or absence of the new
options at connection setup time indicates whether or not a
stack implements the extension mechanism, adoption can be
incremental. Connection setup falls back to legacy behavior
if either stack fails to recognize the new options.

The remainder of the paper is organized as follows: Sec-
tion 2 discusses related work. Section 3 presents the pro-
posed modification to TCP, discusses how it maintains back-
wards compatibility while enabling renewed innovation, out-
lines how new capabilities can be implemented using the
mechanism, and ends with a critical analysis of the ap-
proach. We conclude in Section 5 with suggestions for fur-
ther work.

2. RELATED WORK
Network researchers have identified challenges with the

TCP specification that inhibit our ability to evolve the pro-
tocol stack to allow richer functionality. Among promi-
nent efforts are those by Kissel and Brown [5, 7], Ford [8],
Habib [9], Mahieu [10], Salz [11], Snoeren [12,13,20], Land-
feldt [14] and Maltz [15]; the most recent being that of Iyen-
gar [3] and Ford [2, 4, 6]. Much of the related research ad-
dresses individual problems that need to be solved; be it
providing support for fault tolerance using multiple network
paths (e.g., Salz [11]), providing support for mobility (e.g.,
Snoeren [12]), developing abstractions to decouple the bind-
ing of transport endpoints1 to entity names (e.g., Ford [6]),
or employing diverse transports longitudinally over the In-
ternet path (e.g., Brown [7]). In addition, all the above
work indicates that significant modifications to TCP are re-
quired (e.g., modifications to the sockets API which may
break legacy applications). Others have argued that it is
imperative that a clean-slate approach be adopted [16–19].

The papers most closely related to ours are [2–4,6]. Ford
et al. [2] suggest using TCP options to compose an applica-
tion stream from multiple transport flows. These transport
flows may then be mapped onto different network paths (if
available). Iyengar et al. [3,4,6] discuss a logical refactoring
of the transport layer to form the semantic, isolation, flow,
and endpoint sub-layers in an architecture they refer to as
Transport Next Generation (Tng), as shown in Figure 1.
The refactoring highlights the fact that over time a variety
of roles have been coalesced into the transport layer. These
roles may be broadly classified as follows: the identification
of transport endpoint; performance-related functions such as
congestion control; mapping of transport endpoint to entity;
and end-to-end semantic functions such as data ordering.

Our proposed modifications are between the transport and
application layers in the TCP stack, corresponding to the
boundary between the flow and isolation sub-layers in the
Tng architecture. The isolation boundary decouples the ap-
plication data stream from the TCP flow in a backward-
compatible manner. This decoupling, along with the setup
of a control channel, paves the way for substantial extensions
to TCP. While this work does not address any of the afore-
mentioned individual problems directly, it creates a frame-
work upon which solutions can be composed.

Examples of these extensions may be composing an ap-
plication stream from multiple transport flows or setting up
a hybrid transport along the Internet path. We maintain
that the isolation boundary defined in this paper is a suit-

1By transport endpoint, we mean socket pair (i.e., 4-tuple).

Transport

Internet

Link

Physical

Semantic

Isolation

Flow

Endpoint

Tng LayersTCP/IP Stack

Isolation Boundary

Application

Figure 1: The Isolation Boundary in the Context of
the TCP/IP Stack and the Tng Layers.

able mechanism upon which to build the isolation sub-layer
in Tng.

3. PROPOSED SOLUTION
We propose to extend TCP via a set of TCP options,

called Isolation Boundary Options (IBOs), to provide a flex-
ible and dynamic mechanism for creating a larger class of
extensions.

The IBOs are a “hook” for introducing future extensions.
Specifically, the IBOs serve two purposes: (1) decouple the
application data stream from the TCP flow that provides
transport by creating a logical transport-independent flow
that is mapped onto the transport-dependent (TCP) flow,
(2) establish a control channel for composing mappings be-
tween application data streams and the transport-independ-
ent flows in a much more flexible and dynamic way than pro-
vided by TCP options. Ways in which the mechanism can
be used to implement additional functionality will be dis-
cussed in Section 3.1.4, but first we consider the semantics
of the isolation boundary.

3.1 Concept and Semantics
We define an IBO to contain two pieces of information:

(1) an ID to identify a transport-independent logical flow,
and (2) a sequence number from an appropriate sequence
space. The ID, denoted the Transport-Independent Flow
ID (TIFID), is unique in the context of the participating
stacks.2 As with TCP, sequence numbers orients a proto-
col data unit in the application data stream. They are also
used to acknowledge data that has been received. Sequence
numbers used for the former purpose are called Transport-
Independent Sequence Numbers (TISeq) and those used for
the latter are called Transport-Independent Acknowledge-
ment Numbers (TIAck).

TCP stacks advertise that they implement the isolation
boundary by specifying an IBO during connection setup.
If both hosts specify an IBO then the isolation boundary
functionality is enabled. Otherwise, both fall back to legacy
TCP. In this way, backward compatibility is maintained, and
there is no requirement that all hosts be updated simulta-
neously.

3.1.1 Transport-Independent Flow Setup
Consider the sequence diagram shown in Figure 2 for PeerA

and PeerB . A TIFID unique to both stacks is needed to
identify the logical flow. One approach is to allow each stack

2TIFIDs are not session IDs per se. A session would consist
of a composition of transport-independent logical flows and
would have its own logical identity. Indeed, sessions are an
example of additional functionality that can be implemented
with the proposed mechanism.



Peer A Peer B

Choose TIFID_A
and TISeq_A

SYN + TIFID_A + TISeq_A Record TIFID_A,
TISeq_A, and

choose TIFID_B,
TISeq_B 

ACK + TIAck_B

SYN + ACK + TIAck_A + 
TIFID_B + TISeq_B

Record TIFID_B,
TISeq_B

TIAck are zero when not in use

Figure 2: Sequence Diagram of the Exchange of Iso-
lation Boundary Options During Connection Setup.

to select one half of the TIFID. In this case, PeerA defines
the first half of the TIFID using a random value. It also ini-
tializes the TISeq number, using a random value, to define
its transport-independent sequence space and establishes a
mapping between the TISeq and the TCP sequence number.
These partial TIFID and initial TISeq are sent to PeerB in
the SYN packet containing an isolation boundary option.

Upon receipt of the SYN packet, PeerB defines the sec-
ond half of the TIFID using a random value and also de-
fines its TISeq number using a random value to establish
its transport-independent sequence space. Finally, it sends
the completed TIFID and its TISeq back in the SYN+ACK
TCP header, making sure to acknowledge the TISeq it re-
ceived from PeerA using the TIAck field.

Upon receipt of the reply, PeerA notes the completed
TIFID, which uniquely identifies the flow. It returns an
ACK packet as the final phase of the three-way handshake,
making sure that it acknowledges the SYN it received using a
TIAck.3 At this point, transport-independent flows in each
direction have been established, along with the associated
bidirectional TCP connections. The transport-independent
flows constitute a control channel through which the two
stacks are able to negotiate and coordinate additional func-
tionality in TCP.

3.1.2 Transport-Independent Flow Close
Next, we consider how to close a transport-independent

flow and release resources. The primary mechanism for a
graceful close is a message exchange on the control chan-
nel. Alternatively, a graceful close of the underlying TCP
connection, i.e., in response to a FIN packet, causes the
state associated with the transport-independent flow to be
cleaned up. Ultimately, as with any protocol operating over
an unreliable communications channel, the use of protocol
timeouts are unavoidable. A timeout triggered within TCP
would propogate up to the transport-independent flow and
either cause it to close or cause it to attempt a reconnection.

3.1.3 Re-synchronization
At any time during the life-cycle of the transport-indepen-

dent flow, the connection may be re-synchronized by ex-
changing IBOs in a new TCP three-way handshake. Typ-
ically, IBOs are exchanged again when flows resume oper-
ation after a TCP disconnection or when communication
becomes impossible due to an address change. After re-

3Note that unlike conventional TCP options, the IBOs are
acknowledged in the above exchange as part of the three-way
handshake. If the options in either direction were removed,
by a middlebox perhaps, then both stacks would become
aware of it and fall back to legacy behavior.

synchronization both stacks may safely discard state as-
sociated with the old TCP connection. Because the data
structures were created when the isolation boundary was set
up during the original three-way handshake, the transport-
independent flows can be synchronized to a new TCP con-
nection. The procedure for resuming operation after discon-
nection is the same as for creating a new connection except
that the previously completed TIFID is used instead. Since
the TIFID is already complete, the receiving stack looks
up the isolation boundary information corresponding to the
complete TIFID and resumes the flow rather than create a
new one. The exchange of SYN and SYN+ACK packets in
this case allows the stacks to re-synchronize by exchanging
the TISeq numbers where they left off at the time of the dis-
connection. Re-synchronization attempts are also validated
by TISeq numbers that logically fit within the current state
of the flow similar to how TCP validates sequence numbers.

3.1.4 Use of the Control Channel
At the conclusion of successful setup phase, a control chan-

nel exists between the two stacks. At this point data chan-
nels to serve the application’s data stream will be set up
subordinate to the control channel. These are set up in
a similar fashion to the control channel and are separate
transport-independent flows. Requests and responses that
implement additional functionality on top of TCP are com-
municated across the control channel. The following are
some of the possiblities. In each of the cases, the control
channel provides a mechanism for composing or manipulat-
ing transports of various kinds.

Resuming After a Disconnection The ability to resume
after a disconnection is a direct consequence of imple-
menting the Isolation Boundary and is discussed in
Section 3.1.3.

Multihoming Such support can only be possible if we de-
couple flow identification from the transport end-point
identification. Since we can do so given the Isola-
tion Boundary, we can construct a virtual flow which
may be mapped to transport connection over differ-
ent networks. This requirement was also identified in
MPTCP [2].

Sophisticated possibilities of striping a virtual flow onto
multiple transport connections (operating over differ-
ent network paths) may also be realized — for relia-
bility purposes. In these cases, the question of how to
map the transport independent sequence space onto
multiple TCP sequence spaces must also be carefully
considered.

Migration Given the extensions of resuming after a discon-
nection and support for multihoming, we can envision
the possibility of migrating the mapping of virtual flow
from one transport connection to another.

Hybrid Transports With a control channel in place, the
communicating peers can construct a hybrid trans-
port. The control channel allows the peers to share in-
formation regarding appropriate application gateways.
While the peers converse over a (typical) packet-switc-
hed transport connection, the respective gateways may
be requested (by the peers) to setup a circuit on their
behalf. Once the circuit is in place, the peers may



setup transport connections to the application gate-
ways and later migrate the virtual transport for the
packet-switched transport to the hybrid transport con-
nection.

The precise protocol for the control channel is the sub-
ject for future discussion among the community but it is
envisioned that the protocol will be extensible in order to
remain flexible in the face of future requirements. Clearly,
setup and teardown messages will be required. The means
for determining the capability of the remote peer will also
be necessary.

3.1.5 Light-weight Isolation Boundary Operation
Up to this point, the isolation boundary option defined for

TCP provides increased functionality by creating a control
channel that is used by the stacks to negotiate and imple-
ment new functionality. Not all transport connections need
the full extensibility (and heavier weight) of a control chan-
nel. We therefore define a variant of the IBO which still
provides transport independence for data but does not cre-
ate an out-of-band control channel. To distinguish between
the two variants, we call the first Isolation Boundary Option
– Control (IBO-C), the variant discussed so far, and the sec-
ond Isolation Boundary Option – Data (IBO-D). Both types
are established in the same way as discussed in Section 3.1.1.
IBO-C allows protocol designers great flexibility in adapting
TCP’s behavoir. Normally IBO-D is used for a subordinate
data channel, but in light-weight operation has no associ-
ated control channel. Two stacks negotiate the use of light-
weight operation if either stack advertises an IBO-D during
the initial flow setup. This admits a simpler transitional
implementation.

The IBO-D establishes an opaque flow onto which an ap-
plication data stream is mapped. Because the flow is opaque,
the only capability added to TCP by the option is the sep-
aration of the transport-independent flow from the under-
lying transport connection. However, this is sufficient for
IBO-D to support resuming after disconnection and migra-
tion. These capabilities are useful to applications even if
there is no need for any other functionality.

3.1.6 Mapping Sequence Spaces
A one-to-one mapping of the transport-independent to the

TCP sequence space is straightforward. Connection setup
establishes the initial mapping. During a transfer, the se-
quence numbers advance in synchrony as data is successfully
acknowledged by the transport layer. Because of the implicit
synchronization, there is no need to explicitly send the TISeq
and TIAck numbers after the three-way handshake.

The synchronization between the TISeq and correspond-
ing TCP sequence numbers is lost if the transport connec-
tion is lost. During reconnection, the correspondence be-
tween the TISeqs and the new TCP sequence numbers is
re-established thereby resuming reliable communications at
the same point where the flows left off in the application
data streams.

We note that other mappings between the transport inde-
pendent and TCP’s sequence numbers are possible depend-
ing upon the functionalities being implemented by the stack
over the control channel. For example, multiple data con-
nections may be setup and data striped across the the con-
nections to take advantage of multiple paths for resilience or
throughput purposes.

3.2 A Strawman Wire Protocol
To assess the feasibility of a backward-compatible TCP

isolation boundary we now imagine one possible implemen-
tation of the TCP isolation boundary option.

We define an option with explicit fields for the TIFID,
TISeq, and TIAck. The full compliment of fields are likely
not needed in each phase of connection establishment. As
such, the bit field definitions below can be considered a worse
case consuming most of the remaining option space during
connection setup. A more frugal mapping of concept to bits
is certainly possible.

A TCP header may consist of up to 40 octets of options.
Over the years, a number of options have been defined.
Hence, the space available for new options has become con-
strained. Note that even though almost the entire remaining
options space during establishment is consumed for the IBO,
the role of TCP options to allow for extensibility can now
be assumed by the control channel in a far more flexible
manner.

At connection setup time, there are already four TCP
options in common use: window scaling, time stamps, max-
imum segment size, and selective acknowledgments permit-
ted. Factoring in the 19 octets these options require, 21
octets out of 40 are still available during connection estab-
lishment. A simple approach uses 20 of the remaining octets
to implement the isolation boundary.

The first field of 48-bits contains the Transport-Independ-
ent Flow Identifier (TIFID) which labels the flow indepen-
dent of the underlying transport. As the TIFID only needs
to be unique within the context of the two end hosts, the re-
questing process specifies a locally unique value for the first
half of the TIFID and the responding process later specifies
the second half of the TIFID. Thus the TIFID is guaran-
teed to be unique to both stacks. During the time that the
TIFID is partially specified, the second half is set to zero.

The isolation boundary between the upper protocol lay-
ers and the transport is further strengthened by two 48-
bit protocol-independent sequence spaces, one for each flow
direction.4 As with TCP, the two endpoints select initial
Transport-Independent Sequence Numbers (TISeq) during the
three-way handshake. Transport-Independent Acknowledge-
ment Numbers (TIAck) are returned to acknowledge the re-
ceipt of the SYN packets.

The TISeq are mapped onto the protocol-dependent se-
quence numbers of the underlying (TCP) transport and re-
main synchronized with them as long as the transport con-
nection is active. When a transport sequence number is
incremented, so is the TISeq.

4. CRITICAL ANALYSIS
Any change to TCP will appropriately be met with a

critical eye. Protocols and practices have evolved from the
widespread use and development of the Internet creating de-
pendencies on TCP. We have argued that TCP should admit
a smooth transition to new functionality in order to mini-
mize the cost of transition for network operators and users.
In this sense we now turn our attention to the interaction
with existing protocols and practices. We assume for the

4The TIFID and the sequence number fields were chosen to
be as large as possible as a compromise between providing
better support for large congestion windows and the number
of option bits available.



sake of this analysis the strawman wire protocol previously
described.

4.1 TCP Option space
In considering the plausibility of an IBO for TCP, it was

critical to assess the space available in the TCP header. We
focus on options that are considered mandatory or in com-
mon use in implementations. As a distinction, the validity
of many options depends on the state of the connection.
During the three-way handshake the following options need
to be supported: Maximum Segment Size (RFC793, four
octets), Window Scaling (RFC1323, three octets), Selective
Acknowledgement Permitted (RFC2018, two octets), and
Time Stamp (RFC1323, ten octets). Based on our analy-
sis, there is sufficient room for the 20 octets that the two
isolation boundary options require.

4.2 Incompatible Options
Due to the limited TCP option space not all options can

be supported simultaneously. Here we address several other
options that are valid during the three-way handshake. We
will disregard the Alternate Checksum Option (RFC1146)
and the Partial Ordering Option (RFC1693) since accord-
ing to the TCP Roadmap (RFC4614), there is a lack of
interest in these protocols. The TCP Roadmap also notes
that T/TCP (RFC1644) has a serious defect. TCP MD5
(RFC2385) and the follow-on TCP Authentication Option
(RFC5925) are used to protect BGP and LDP and hence are
likely not to benefit from an isolation layer. Since these are
concerned with protecting the infrastructure itself and are
not used for user traffic, we need not concern ourselves with
compatibility. The last protocol we consider is the Quick-
Start Response (RFC4782). This protocol is experimental
and it remains to be seen if there will be widespread adop-
tion. If the IBO and Quick-Start were both to come into
common usage, then the contention will need to be resolved
by omitting some option from the SYN and SYN/ACK pack-
ets.

4.3 Performance
The lack of field alignment, regardless of which option

causes it, may lead to degraded performance for some net-
work stacks due to the misaligned memory accesses that may
require individual octet manipulations. In the case of the
IBO, a peer stack may see degraded performance whether or
not it supports isolation. Since the IBO is only valid during
the three-way handshake, their processing is off the critical
data path and thus should not adversely affect performance.

4.4 Simplicity
With regard to simplicity, the isolation boundary directly

implements only (1) the decoupling of a transport independ-
ent flow from the transport connection, and hence, from the
network endpoint identifiers involved, (2) provides a means
for keeping track of where the conversation is in the flow,
and (3) provides for the establishment of a control channel
upon which additional functionality can be built. The imme-
diate implication is that multiple TCP connections can be
associated with one flow over its lifetime with multiplexing
opportunities in both time and space. Clearly the first two
make re-synchronization possible. We go no further with
the third at this time other than to acknowledge that the
possibility of using the control channel to extend the service

TCP offers through inexpensive, out of band signaling. This
is done with the expectation that other protocol designers
will use this mechanism to extend TCP’s functionality in
the future.

4.5 SYN Cookies
SYN cookies [21] mitigate a serious vulnerability in TCP.

A server must maintain state in its SYN cache for each con-
nection attempt received. An attacker can easily exploit
this and fill up the SYN cache by simply crafting TCP SYN
packets to overwhelm the server. Normally the SYN cache
records the state that is required to establish a TCP connec-
tion. The IBO would also have to be recorded in the SYN
cache. When a server is under attack it instead responds
with a SYN cookie that maintains minimal state and allows
the server to continue to serve new connection requests but
in a degraded mode of operation. Like most options, the
IBO will not be preserved when a server is operating under
attack. Because the isolation boundary is backward com-
patible, a server in this mode will continue to operate in a
classic TCP fashion.

4.6 Middleboxes
A TCP connection that makes use of the IBO behaves

identically to a TCP connection that does not. The pri-
mary concern with respect to the IBO is intrusion detec-
tion/prevention systems. If one of these systems encounters
an as yet unknown IBO, it may do one of two things. It
may either remove the offending option or it may discard
the offending packet. From the concern of not degrading
responsiveness as perceived by the user, the first option is
preferred. The first option will simply cause TCP to fall
back into a classic operation mode. The second, however,
will be a needlessly dropped packet that forces the user to
wait for retransmission in order to fallback to a legacy mode
of operation. This would be perceived by the user as unre-
sponsive but could be mitigated by the client sending two
SYN packets, one with and one without the IBO. The client
would then prefer the connection that supported Isolation
and simply reset the other.

4.7 Security
As a design goal, the isolation boundary should have se-

curity characteristics that are no worse than TCP. The pri-
mary vulnerability of use of the IBO is that it allows re-
synchronization of a connection from any network address.
If an attacker knows critical information about the current
connection state, it is possible to hijack an existing con-
nection from anywhere else on the Internet, but an attacker
must know the TIFID and the TISeq numbers of the current
set of unacknowledged data.

In order for an attack to be successful, the attacker must
have knowledge of the full conversation from the point of
instantiation. The TIFID is only exposed in the three-way
handshake and cannot be easily guessed due to its length.
The TISeq numbers need to be derived from the initial se-
quence numbers, the current TCP sequence numbers, and
the fact that TCP sequence number roll-over may have oc-
curred. In other words, the attacker needs to know the
TIFID and the count of all the octets that pass by in ei-
ther direction in order to falsify the reconnect request.

If the attacker is not on the data path between the parties
in the connection, then the attacker must have a collaborator



that is. This is no worse than TCP connection hijacking
without the IBO in that the attacker in this case also needs
to be in the data path. TCP hijacking is more onerous in
this instance because the attacker need not be privy to the
beginning of the connection.

4.8 Application Compatibility
Not only does an extended TCP that utilizes an isola-

tion boundary need to be backward-compatible with other
peer implementations, but it also needs to be backward-
compatible with applications. Since in all other respects the
semantics of TCP have not changed, an application that is
unaware of other functionality that might be enabled by the
isolation boundary will continue to operate correctly when
using a TCP with the IBO. In fact, this application will gain
some benefit in being able to re-synchronize a lost connec-
tion.

5. SUMMARY AND FUTURE WORK
In this paper, we have laid out an argument for estab-

lishing an Isolation Boundary for TCP that maintains back-
wards compatibility. Clearly much work is still required to
fully evaluate the approach and we have only just begun
work on an implementation.

The specification of the control channel protocol has been
intentionally left out of scope for this work. However we
feel that a compliant stack that implements the Isolation
Boundary must admit the possibility of a control channel
and properly negotiate a data only channel in addition to
implementing the control channel itself. We have claimed
that given an Isolation Boundary, protocol designers will be
able to construct higher level functionality on top of TCP.
As a proof of this claim, we will at least need to create a
mock implementation of the control channel and construct
some higher level functionality on top of this.

A central goal of this protocol is backward compatibility.
This in and of itself needs to be surveyed against existing
implementations and across existing networks. Finally in
the spirit of the IETF, multiple independent implementa-
tions need to be constructed and put to a large scale test of
interoperability.

Acknowledgements
This research was funded in part by Juniper Networks. We
thank Colin Constable, Jayabharat Boddu, Danny Jump,
and Barnaby Crahan for their feedback and support. We
also thank the reviewers for their helpful suggestions.

6. REFERENCES
[1] V. Cerf, “Internet Predictions: Future Imperfect,” in

IEEE Internet Computing. IEEE, 2010, pp. 30–33.

[2] A. Ford, C. Raiciu, M. Handley, and S. Barre, “TCP
Extensions for Multipath Operation with Multiple
Addresses,” RFC (Experimental), Work in Progress,
Internet Engineering Task Force, Jul. 2010.

[3] J. Iyengar and B. Ford, “A Next Generation Transport
Services Architecture,” RFC (Informational), Work in
Progress, Internet Engineering Task Force, Jul. 2009.

[4] B. Ford and J. Iyengar, “Efficient Cross-Layer
Negotiation,” in HotNets-VIII, 2009.

[5] E. Kissel, M. Swany, and A. Brown, “Improving
GridFTP Performance using the Phoebus Session
Layer,” in SC ’09: Proceedings of the Conference on
High Performance Computing Networking, Storage
and Analysis. ACM, 2009, pp. 1–10.

[6] B. Ford and J. Iyengar, “Breaking up the Transport
Logjam,” in HOTNETS-VII, 2008.

[7] A. Brown, M. Swany, E. Kissel, and G. Almes,
“Phoebus: A Session Protocol for Dynamic and
Heterogeneous Networks,” University of Delaware,
Tech. Rep. 2008:334, 2008.

[8] B. Ford, “Structured Streams: A New Transport
Abstraction,” in ACM SIGCOMM CCR, vol. 37, no. 4.
ACM, 2007, pp. 361–372.

[9] A. Habib, N. Christin, and J. Chuang, “Taking
Advantage of Multihoming with Session Layer
Striping,” in IEEE INFOCOM. IEEE, 2006, pp. 1–6.

[10] T. Mahieu, P. Verbaeten, and W. Joosen, “A Session
Layer Concept for Overlay Networks,” in Wireless
Personal Communications, vol. 35, 2005, pp. 111–121.

[11] J. Salz, A. C. Snoeren, and H. Balakrishnan, “TESLA:
A Transparent, Extensible Session-Layer Architecture
for End-to-end Network Services,” in 4th USENIX
Symposium on Internet Technologies and Systems
(USITS), 2003, pp. 211–224.

[12] A. C. Snoeren, “A Session-Based Architecture for
Internet Mobility,” Massachusetts Institute of
Technology, Tech. Rep., 2003.

[13] A. Snoeren, H. Balakrishnan, and M. Kaashoek,
“Reconsidering Internet Mobility,” in Hot Topics in
Operating Systems, 2001, pp. 41–46.

[14] B. Landfeldt, T. Larsson, Y. Ismailov, and
A. Seneviratne, “SLM, A Framework for Session Layer
Mobility Management,” in 8th International
Conference on Computer Communications and
Networks, 1999, pp. 452–456.

[15] D. A. Maltz and P. Bhagwat, “MSOCKS: An
Architecture for Transport Layer Mobility,” in IEEE
INFOCOM, vol. 3. IEEE, 1998, pp. 1037–1045.

[16] K.-K. Yap, M. Kobayashi, D. Underhill,
S. Seetharaman, P. Kazemian, and N. McKeown, “The
Stanford OpenRoads Deployment,” in 4th ACM
WINTECH. ACM, 2009, pp. 59–66.

[17] F. Teraoka, “Redesigning Layered Network
Architecture for Next Generation Networks,” in IEEE
GLOBECOM Workshops. IEEE, 2009, pp. 1–6.

[18] A. Greenberg, G. Hjalmtysson, D. A. Maltz, A. Myers
et al., “A Clean Slate 4D Approach to Network
Control and Management,” in ACM SIGCOMM CCR,
vol. 35, no. 5. ACM, 2005, pp. 41–54.

[19] A. Greenberg, “Refactoring Network Control and
Management: A Case for the 4D Architecture,”
Carnegie Mellon University, Tech. Rep.
CMU-CS-05-117, 2005.

[20] A. C. Snoeren and H. Balakrishnan, “An End-to-End
Approach to Host Mobility,” in Proceedings of the 6th
Annual International Conference on Mobile computing
and networking, ser. MobiCom ’00. ACM, 2000, pp.
155–166.

[21] D. J. Bernstein, “SYN cookies,” February 2002.
[Online]. Available: http://cr.yp.to/syncookies.html

http://cr.yp.to/syncookies.html

	Introduction
	Related Work
	Proposed Solution
	Concept and Semantics
	Transport-Independent Flow Setup
	Transport-Independent Flow Close
	Re-synchronization
	Use of the Control Channel
	Light-weight Isolation Boundary Operation
	Mapping Sequence Spaces

	A Strawman Wire Protocol

	Critical Analysis
	TCP Option space
	Incompatible Options
	Performance
	Simplicity
	SYN Cookies
	Middleboxes
	Security
	Application Compatibility

	Summary and Future Work
	References

