

A Fluid-based Simulation Study: The Effect of Loss Synchronization on Sizing Buffers over 10Gbps High Speed Networks

Suman Kumar, Mohammed Azad, Seung-Jong Park*

Computer Science Department and Center for Computation and Technology Louisiana State University

Background

- □ Problem and Motivation
- □ Fluid Model for High Speed Networks
- Performance Evaluation on 10Gbps High Speed Networks
- □ Conclusion and Future Research Direction

Background: Initial Work

□ Packet switching networks need a buffer at routers to

- ✓ Absorb the temporary bursts to avoid packet losses
- \checkmark Keep the link busy during the time of congestion

Classic rule of thumb for sizing buffers to achieve full link utilization requre

- \checkmark 2T is the two-way propagation delay
- \checkmark *C* is capacity of bottleneck line

$$B = 2T \times C$$

*Villamizar and Song: "High Performance TCP in ANSNET", CCR, 1994

Background: Recent Works

Small size buffers are enough to achieve high link utilization [Appenzeller 2004, Raina 2005, etc]

$$B = \frac{2T \times C}{\sqrt{n}}$$

- ✓ Based on assumptions:
 - Larger number of flows than 100 or 1,000 flows
 - Desynchronized and long-lived flows
 - Non-burst traffic flows

Motivation to Revisit

Different characteristics of high speed networks

- \checkmark A few number of users sharing high speed networks
- \checkmark Most of applications over 10Gbps high speed networks
 - Create a few number of parallel TCP flows
- ✓ Most of TCP variants for high speed networks
 - Produce high burst traffic

✓ Larger buffer than BDP is not feasible for high speed networks

Reconsideration on the sizing buffer over 10Gbps high speed networks

- ✓ Step 1: Find an efficient simulation method for 10Gbps networks
- ✓ Step 2: Evaluate the performance as a function of buffer size
- ✓ Step 3: Analyze the impact of synchronization of TCP flows

Comparison of Simulation Methods

NS2/NS3 Simulation

- ✓ Only Gigabit results are available
- Does not scale to bandwidth of the order of 10Gbps
- Queuing Model [Raina 2005, Barman 2004]
 - Produces statically stable averaged results
- □ Fluid Simulation [Liu 2003]
 - Describes dynamic nature of TCP flows, buffer occupancy, etc.

Scope of this work

Network operator's Dilemma

- ✓ How much buffering to provide
- Network Users Dilemma
 - \checkmark Which high speed TCP variants to use

□ Goal:

- \checkmark Understand the impact of loss synchronization on sizing buffers
- The effect of these two on the performance of high speed TCPs on 10Gbps high speed networks

A General Fluid Model

- > Traffic is modeled as fluid. [Fluid model -Misra et al]
 - TCP congestion window: $\frac{dW_i(t)}{dt} = \frac{1(W_i(t) < M_i)}{R_i(t)} \frac{W_i(t)}{2}\lambda_i(t)$
 - Queue dynamics $\frac{q_l(t)}{dt} = -1(q_l(t) > 0)C_l + \sum_{i=1}^{n_l} A_l^i(t)$
 - Sum of the arrival rates of all flows at bottleneck queue $ARsum_l = \sum_{i=1}^{n_l} A_l^i(t)$
 - DT queue generates the loss probability $p_l(t) = \begin{cases} 0, & q_l(t) < q_l^{max} \\ max(\frac{ARsum_l C_l}{ARsum_l}, 0), & q_l(t) = q_l^{max} \end{cases}$
 - This loss probability is proportionally divided among all flows $\lambda_i(t) = \sum_{l \in F_i} A_l^i(t) p_l(t)$

Above model do not capture loss synchronization

Loss-Synchronization Model

- Synchronization controller
 - Controls the loss synchronization factor $(= m_k)$ at the time of congestion.
- Drop Policy controller
 - Selects those m_k under some policy

Loss Synchronization Model

- Synchronization Controller
 - \checkmark selects m_k flows to drop

Drop policy controller

- ✓ At kth congestion, the packet-drop policy controller determines the priority matrix P^k = [D_k¹, D_k²...., D_k^N]
 - D_kⁱ > D_k^j indicates that packets in flow i has higher drop probability than flow j

All the flows satisfy
$$\sum_{i \in Pl_k} \lambda_i(t) = ARsum_l - C$$

 \checkmark every loss is accounted and distributed among the flows

High-Speed Network Simulation Set-up

□ Congestion events occur when bottleneck buffer is full.

□ Highest rate flows are more prone to record packet losses.

✓ Drop highest rate flows first

□ High Speed TCP flow's burstiness induces higher level of synchronization.

- Select random m_k at any congestion event k, we define a synchronization ratio parameter X.
 - Ratio of synchronized flows (i.e. experiencing packet losses) and total number of flows is no less than X
 - Selection of X satisfies a least certain level of drop synchronization

Performance Matrix

✓ % link utilization denoted as
$$U = \frac{\sum_{s} \sum_{i=1}^{n_l} Dep_l^i(t_s)}{C_l \times \sum s} \times 100$$

- sample the departure rate (= (dep_i^i) of all the flows *i* at the bottleneck link

Fluid Model Equations for high speed TCP-Variants

TCP-Variant	а	b
TCP-Reno	1	0.5
STCP	0.01 <i>w</i>	0.125
HSTCP	$2\frac{w^{0.8}b}{2-b}$	$(0.1 - 0.5) \frac{\log(w) - \log(w_{low})}{\log(w_{high}) - \log(w_{low})}$
		+0.5
CUBIC-TCP	$Min(target_w - w, S_{max}R)$	0.2
	Where, $target_w$	
	$= origin_point + c(\Delta_{th} - K)^3$	
	$K = (b.prevMax_w/c)^{\frac{1}{3}}$	
H-TCP	$1 + 10(\Delta_i - \Delta_{th})$	$1 - \frac{R_{min}}{R_{max}}$
	$+(\frac{\Delta_i-\Delta_{th}}{2})^2$	
FAST-TCP	$Min(w,\gamma(2baseR)$	0.5
	$-avgRTT)\frac{w}{RTT} + \alpha$	

$$\frac{dW_i(t)}{dt} = \frac{a(t)}{R_i(t)} - W_i(t)b(t)\lambda_i(t)$$

* Kumar et. al. "A loss-event driven scalable fluid-based simulation method for high-speed networks," Journal of Computer Networks, Elsivier, 2010 Jan

12

Simulation Setup

□ Unfair drop-tail with the support of loss-synchronization

- ✓ Two level of Synchronization
- ✓ Low, *X*=0.3
- ✓ High, *X*=0.6

m is drawn from normal distribution and bounded by above values of X

Simulation Model Verification

✓ Fluid simulation with synchronization model gives more accurate and realistic results than the Boston model.

Louisiana State University • Department of Computer Science & CCT

Simulation Setup for10Gbps Networks

- Network Topolgy = Dumb-bell
- $\Box \text{ Number of flows} = 10$
- □ Bottleneck Link = 10Gbps,
- □ Link delay = 10ms
- □ RTTs of 10 flows are ranging from 80ms ~ 260ms
- Maximum buffer size = 141,667 of 1500Byte packets (calculation based on average RTT of 170ms)

Simulation Results

Louisiana State University • Department of Computer Science & CCT

Observations

- Measured throughputs of high speed TCP variants were lower than that of TCP Reno especially for high level of synchronization
- □ For HSTCP, more than 90% link utilization can be achieved with buffer size fraction of 0.05
- Main reason for the poor performance of CUBIC and HTCP as compared to AIMD and HSTCP is attributed to its improved fairness
- Lower synchronization (= Higher desynchronization) further improves the link utilization for HSTCP and AIMD.

Conclusion and Future Work

- A loss synchronization module for fluid model simulation is proposed
- Simulation results for HSTCP, CUBIC and AIMD are presented to show the effect of different buffer sizes on link utilization.
- Loss synchronization module as a black box, where loss synchronization data can be fed from real experiments or one can utilize some theoretical distribution models.
- □ Future work
 - ✓ Exploration of more accurate models for drop synchronization
 - ✓ Proposing desynchronization methods

Experiment with CRON

Experimental design with Java based GUI of Emulab

 Additional features such as tracing, Link Queuing policy, traffic generators, availability of TAR files etc.

Experiment with CRON contd...

Experiment Options	Settings Vise	alization NS File Details		
View Activity Logfile	Name:	Ytopology		
Terminate Experiment	Description.	Link test on Y topology		
Modify Experiment	Project:	CRONtest		
Modify Traffic Shaping Modify Settings	Group:	CRONtest		
Link Tracing/Monitoring	Experiment Head:	userccui		
Event Viewer	Greated:	2010-10-23 22:24:02		
Update All Nodes Rebort All Nodes	Last Swap/Modify:	2010-10-29 17:13:47 (userccui)		
Run LinkTest	Idle-Swap:	No (test)		
Show History	Max. Duration:	No		
Duplicate Experiment	Save State:	No		
	Path:	/proj/CRONtest/exp/Ytopology		
0 Free PCs, 0 reloading pc SUN4240 0	Status:	active		
SUN4240pc2only 0	Linktest Level:	0		
	Reserved Nodes:	7 (pc)		
	Mem Usage Est	0		
	CPU Usage Est:	3		
	Last Activity:	2010-11-04 12:09:41		
	Idle Time:	0 hours (stale)		
	Locked Down:	No (Toggle)		

Reserved Nodes

Sync Server

Index:

node1

168

Node ID	Name	Туре	Default OSID	Node Status	Hours Idle[1]	Startup Status[2]	SSH	Console	Log
pc1	node1	pcSUN4240	UBUNTU10-64-BETA-10K	possibly down	29.03 ?	none			
pc3	node2	pcSUN4240	UBUNTU10-64-BETA-10K	possibly down	34.97 ?	none			
pc4	tbdelay1	pcSUN4240	FBSD81-64-DELAY-BETA	up	0	0			
pc5	tbdelay2	pcSUN4240	FBSD81-64-DELAY-BETA	ир	0 .08	0			
pc6	node3	pcSUN4240	UBUNTU10-64-BETA-10K	possibly down	16.78 ?	none			
pc7	router	pcSUN4240	UBUNTU10-64-BET/A-10K	up	16.36	none			
pc9	tbdelay0	pcSUN4240	FBSD81-64-DELAY-BETA	up	0	0			

Louisiana State University · Department of Computer Science & CCT

Experiment with CRON contd...

- Y-topology similar to Dumbbell
- Dummynet software emulators were used to emulate large size buffers
- Bottleneck link has 8Gbps bandwidth and 30msec
- □ CRON testbed webpage
 - ✓ http://cron.cct.lsu.edu

Visualization, NS File, and Details

Experiment CRONtest/Test

Louisiana State University • Department of Computer Science & CCT

Questions ?

Louisiana State University · Department of Computer Science & CCT