
Nasif Ekiz, Paul D. Amer

A Model for Detecting Transport
Layer Data Reneging

Nasif Ekiz, Paul D. Amer
Protocol Engineering Laboratory

Computer and Information Sciences,

University of Delaware

supported by PFLDNeT 2010

OUTLINE

1. What is data reneging?
2. Why study reneging?
3. A model to detect reneging
4. Model verification
5. Work in progress

OUTLINE

1. What is data reneging?
2. Why study reneging?
3. A model to detect reneging
4. Model verification
5. Work in progress

Types of acknowledgements

� For ordered data - cumulative ACK n
� bytes [… to n-1] (TCP) [RFC 793]
� segments [… to n] (SCTP) [RFC 2960]

� For out-of-order data - selective ACK (SACK) m-n� For out-of-order data - selective ACK (SACK) m-n
� bytes [m to n-1] (TCP) [RFC 2018]
� segments [m to n] (SCTP) [RFC 2960]
�Prevents unnecessary retransmissions during loss recovery
�Improves throughput when multiple losses in same window

Receive buffer

Receive Buffer
3 4 5 7 9 11 12 13

Receiving
Application

ordered data (ACKed)

out-of-order data (SACKed)

available space

Data reneging

� TCP is designed to tolerate reneging
� [RFC 2018]: “The SACK option is advisory, in

that, while it notifies the data sender that the
data receiver has received the indicated
segments, the data receiver is permitted to latersegments, the data receiver is permitted to later
discard data which have been reported in a
SACK option.”

�discarding SACKed data is “reneging”
�TCP data sender retains copies of all SACKed data

until ACKed

TCP and SCTP tolerate reneging

� We argue that tolerating reneging is wrong

1. Hypothesis: “data reneging rarely if ever occurs in
practice”

2. Research demonstrates improved performance if 2. Research demonstrates improved performance if
SACKed data were not renegable
�better utilization of send buffer

� improved throughput (SCTP only)

•Natarajan, Ekiz, Yilmaz, Amer, Iyengar, Stewart, “Non-renegable selective acks
(NR-SACKs) for SCTP” Int'l Conf on Network Protocols (ICNP), Orlando, 10/08

•Yilmaz, Ekiz, Natarajan, Amer, Leighton, Baker, Stewart, "Throughput analysis
of Non-Renegable Selective Acknowledgments (NR-SACKs) for SCTP",
Computer Communications. 2010

OUTLINE

1. What is data reneging?
2. Why study reneging?
3. A model to detect reneging
4. Model verification
5. Work in progress

Why study reneging?

� Let’s assume transport protocols are designed to
NOT tolerate data reneging
�optimal send buffer utilization
� improved throughput (SCTP only)

� Changing current TCP and SCTP into non-
reneging protocols is easy:
� SACK semantics changed from advisory to permanent
� If data receiver needs to renege, data receiver must first

RESET the connection

Why study reneging?

� Suppose reneging occurs 1 in 100,000 TCP (or
SCTP) flows

� Case A (current practice): reneging tolerated
99,999 non-reneging connections underutilize send � 99,999 non-reneging connections underutilize send
buffer (and for SCTP may achieve lower throughput)

� 1 reneging connection continues (maybe?)

� Case B (proposed change): reneging not tolerated
� 99,999 connections have equal or better send buffer

utilization (and for SCTP throughput)
� 1 reneging connection is RESET

Why study reneging?

� Data reneging has never been studied

� Does data reneging happen or not?

� If reneging happens, how often?

OUTLINE

1. What is data reneging?
2. Why study reneging?
3. A model to detect reneging
4. Model verification
5. Work in progress

Detecting reneging at TCP data sender

� TCP has no mechanism to detect reneging

� To tolerate reneging, [RFC 2018] suggests the
following retransmission policy
� For each SACKed segment, “SACKed” flag is set
� “SACKed” segments are not retransmitted until a timeout
� At timeout, “SACKed” information is cleared

Data Sender
Receive Buffer

1
1

Data Receiver

ACK 1

Detecting reneging at SCTP data sender

Data Sender
Receive Buffer

1
1

2

Data Receiver

ACK 1

Detecting reneging at SCTP data sender

Data Sender
Receive Buffer

1

3

1

2

3

Data Receiver

ACK 1

ACK 1, SACK 3-3

Detecting reneging at SCTP data sender

Data Sender
Receive Buffer

1

3

1

2

3

4

Data Receiver

ACK 1

ACK 1, SACK 3-3

Detecting reneging at SCTP data sender

3 4
4

ACK 1, SACK 3-4

Data Sender
Receive Buffer

1

3

1

2

3

4

Data Receiver

ACK 1

ACK 1, SACK 3-3

Detecting reneging at SCTP data sender

3

3

4

4 5

4

5
ACK 1, SACK 3-4

ACK 1, SACK 3-5

Data Sender
Receive Buffer

1

3

1

2

3

4

Data Receiver

ACK 1

ACK 1, SACK 3-3

Detecting reneging at SCTP data sender

3

3

3

4

4

4

5

5

4

5

6
6

ACK 1, SACK 3-4

ACK 1, SACK 3-5

ACK 1, SACK 3-6

Data Sender
Receive Buffer

1

3

1

2

3

4

Data Receiver

ACK 1

ACK 1, SACK 3-3

Detecting reneging at SCTP data sender

3

3

3

4

4

4

5

5

4

5

6
6

OS needs memory and
reneges!

ACK 1, SACK 3-4

ACK 1, SACK 3-5

ACK 1, SACK 3-6

Data Sender
Receive Buffer

1

3

1

2

3

4

Data Receiver

ACK 1

ACK 1, SACK 3-3

Detecting reneging at SCTP data sender

3

3

3

4

4

4

5

5

4

5

6

2
2

6

ACK 2

OS needs memory and
reneges!

ACK 1, SACK 3-4

ACK 1, SACK 3-5

ACK 1, SACK 3-6

reneging
detected!

Data Sender
Receive Buffer

1

3

1

2

3

4

Data Receiver

ACK 1

ACK 1, SACK 3-3

Detecting reneging at SCTP data sender

7

3

3

3

4

4

4

5

5

4

5

6

7

2
2

6

ACK 2

OS needs memory and
reneges!

ACK 1, SACK 3-4

ACK 1, SACK 3-5

ACK 1, SACK 3-6

ACK 2, SACK 7-7

reneging
detected!

TCP reneging detected at a router

Receive Buffer

1

3

1

2

3

4

Data Sender Data ReceiverRouter

State of
receive
buffer

4

Receive Buffer

1

3

1

2

3

4

Data Sender Data ReceiverRouter

State of
receive
buffer

TCP reneging detected at a router

3 4
4

5

6

ACK 1, SACK 3-4

ACK 1, SACK 3-4

Receive Buffer

1

3

1

2

3

4

Data Sender Data ReceiverRouter

State of
receive
buffer

TCP reneging detected at a router

3

3

3

4

4

4

5

5

4

5

6

2

6

ACK 1, SACK 3-4

ACK 1, SACK 3-6
ACK 1, SACK 3-6

ACK 1, SACK 3-4

Receive Buffer

1

3

1

2

3

4

Data Sender Data ReceiverRouter

State of
receive
buffer

TCP reneging detected at a router

3

3

3

4

4

4

5

5

4

5

6

2
2

6

ACK 1, SACK 3-4

OS needs memory,
and reneges!

ACK 1, SACK 3-6
ACK 1, SACK 3-6

ACK 1, SACK 3-4

Receive Buffer

1

3

1

2

3

4

Data Sender Data ReceiverRouter

State of
receive
buffer

TCP reneging detected at a router

7

3

3

3

4

4

4

5

5

4

5

6

7

2
2

6

ACK 1, SACK 3-4

OS needs memory,
and reneges!

ACK 1, SACK 3-6

ACK 2, SACK 7-7

ACK 2, SACK 3-6 ?

reneging detected!

ACK 1, SACK 3-6

ACK 1, SACK 3-4

Model to detect reneging
� Current state (C) and new SACK (N) are compared
� 4 possibilities:

SACK 12-17 SACK 12-15

NewCurrent

Model to detect reneging
� Current state (C) and new SACK (N) are compared
� 4 possibilities:

SACK 12-17 SACK 12-15

NewCurrent

SACK 12-13 SACK 12-17 SACK 12-13 SACK 12-17

Model to detect reneging
� Current state (C) and new SACK (N) are compared
� 4 possibilities:

SACK 12-17 SACK 12-15

NewCurrent

SACK 12-13 SACK 12-17 SACK 12-13 SACK 12-17

SACK 22-25 SACK 12-17

Model to detect reneging
� Current state (C) and new SACK (N) are compared
� 4 possibilities:

SACK 12-17 SACK 12-15

NewCurrent

SACK 12-13 SACK 12-17 SACK 12-13 SACK 12-17

SACK 22-25 SACK 12-17

SACK 12-17 SACK 15-20

Model to detect reneging
Current state (C)
New SACK (N)
Reneging (R)

Model to detect reneging

CAIDA* TCP flow Reneg

TCP flows

with SACKs reneging?

yes
orCAIDA*

trace
TCP flow

filter
Reneg
Detect

� tshark
� editcap
� mergecap

� ~4600 lines of C code
� ACK reordering check

or
no

� .pcap

*Cooperative Association for Internet Data Analysis

OUTLINE

1. What is data reneging?
2. Why study reneging?
3. A model to detect reneging
4. Model verification
5. Work in progress

Model verification

� RenegDetect was tested with synthetic TCP flows
� Created reneging flows with text2pcap
� All reneging flows were identified correctly

� RenegDetect was tested with real TCP flows from � RenegDetect was tested with real TCP flows from
CAIDA Internet traces
� At first, reneging seemed to occur frequently
� On closer inspection, we found that many SACK

implementations are incorrect !

•Ekiz, Rahman, Amer, “Misbehaviors in SACK generation” (submitted)

Incorrect SACK implementations

Operating System
Misbehavior

A B C D E F G
FreeBSD 5.3, 5.4 Y Y
Linux 2.2.20 (Debian 3) Y
Linux 2.4.18 (Red Hat 8) Y
Linux 2.4.22 (Fedora 1) Y
Linux 2.6.12 (Ubuntu 5.10) Y
Linux 2.6.15 (Ubuntu 6.06) Y

Linux 2.6.18 (Debian 4) Y
OpenBSD 4.2, 4.5, 4.6, 4.7 Y Y
OpenSolaris 2008.05 Y Y
OpenSolaris 2009.06 Y Y
Solaris 10 Y
Windows 2000 Y Y Y Y Y
Windows XP Y Y Y Y Y
Windows Server 2003 Y Y Y Y Y

Windows Vista Y Y

Windows Server 2008 Y Y
Windows 7 Y Y

OUTLINE

1. What is data reneging?
2. Why study reneging?
3. A model to detect reneging
4. Model verification
5. Work in progress

� Event A: TCP flow reneges
� Hypothesis:

� We want to design an experiment which rejects H0 with
95% confidence to conclude

Experiment design – how to “prove” reneging
does not happen?

� Our experiment will observe n TCP flows hoping to NOT
find even a single instance of reneging

� Using MAPLE, n ≥ 299,572

�Questions?�Questions?

Data reneging in OSes

� Reneging in Linux (version 2.6.28.7)
� tcp_prune_ofo_queue() deletes out-of-order data

� Reneging in FreeBSD, Mac OS
� net.inet.tcp.do_tcpdrain sysctl turns reneging on/off
� tcp_drain() deletes out-of-order data

Data reneging in Linux

3. Inferring the state of receive buffer

TCP Segments with n
SACK options

Enough space for
another SACK

option

Not enough space
for another SACK

option

n=1 ~88% 0%n=1 ~88% 0%

n=2 ~11% 0%

n=3 0.7% 0.20%

n=4 n/a 0.15%

Total number of TCP segments 780,798 (100%)

3. Inferring the state of receive buffer

TCP Segments with n
SACK options

Enough space for
another SACK

option

Not enough space
for another SACK

option

n=1 ~88% 0%n=1 ~88% 0%

n=2 ~11% 0%

n=3 0.7% 0.20%

n=4 n/a 0.15%

Total number of TCP segments 780,798 (100%)

Misbehaviors in SACK generation

� 7 misbehaviors are observed in CAIDA traces

� We designed TBIT tests to verify SACK
generation

� 27 OSes are tested

� RenegDetect is updated to identify those
misbehaviors

Example TBIT test

