Introduction	Background	Experiment	Summary	Back-up

Measurement and Performance Study of PERT for On-demand Video Streaming

Bin Qian A.L.Narasimha Reddy

Department of ECE Texas A&M University

PFLDNeT 2010

Introduction	Background	Experiment 000000000	Summary	Back-up
Outline				

3 Experiment

- NS2 Simulation
- Linux Test

Introduction	Background	Experiment	Summary	Back-up
Motivation				

- Current TCP is not suitable for video streaming applications.
- In the Internet, many other services (HTTP, FTP, P2P) compete for bandwidth.

Introduction	Background	Experiment 000000000	Summary	Back-up
Related Work .				

Boyden et al, 2007

• TCP can function adequately with a 1.5 higher bandwidth than required stream rate in unconstrained streaming.

Wang et al, 2008

• TCP generally provides good streaming performance when the achievable TCP throughput is roughly twice the media bitrate, with only a few seconds of startup delay.

Introduction	Background	Experiment 000000000	Summary	Back-up
Problem				

How well can TCP support streaming, when T/ μ \leq 2.0?

- *T* is the achievable TCP throughput.
- μ is the video playback bitrate.

Introduction	Background	Experiment	Summary	Back-up
Previous Work				

PERT = Probabilistic Early Response TCP

Sumitha et al, 2007

 explored the performance of PERT in homogeneous environment.

Kiran et al, 2008

• made PERT adaptive to heterogeneous environments.

Introduction	Background	Experiment 000000000	Summary	Back-up

Probabilistic Early Response

PERT learns about network congestion by measuring delay

Introduction	Background	Experiment 000000000	Summary	Back-up

Window Adjustment Mechanism ...

Aggressive Window Increasing

•
$$W = W + \alpha$$

Introduction	Background	Experiment	Summary	Back-up

Window Adjustment Mechanism ...

3 modes

 $T_{compete} = 0.65 * \text{maximum queuing delay}$

- When $T < T_{min}$, high-speed mode
- When $T > T_{compete}$, TCP-compete mode
- When $T_{min} < T < T_{compete}$, safe mode

Introduction	Background	Experiment	Summary	Back-up

Window Adjustment Mechanism ...

High-speed mode

• $\alpha = \alpha_{max} = 32$

TCP-compete mode

•
$$\alpha = \mathbf{1} + \mathbf{p}'/\mathbf{p}$$

• p' is the early response probability

• p is the congestion loss probability

Safe mode

•
$$\alpha = \alpha_{min} = 1$$

Introduction	Background	Experiment	Summary	Back-up

Window Adjustment Mechanism

Conservative Window Decreasing

•
$$W = W \times (1 - \beta)$$

•
$$\beta = q'/(q'+q)$$

• q' is the estimated queuing delay

• q is the maximum queuing delay

• so $W \ge W/2$

PERT enqueues more packet earlier and less later ...

Introduction	Background	Experiment ●ooooooooo	Summary	Back-up
NS2 Simulation				
Setup				

Introduction	Background	Experiment	Summary	Back-up
		000000000		
NS2 Simulation				
Noz Simulation				
Performance	Metric			

- CBR stream is successful if fraction of late packets < 10⁻⁴
- Video streaming quality is evaluated by fraction of successful CBR streams

In low range [1.0-1.4], it drops drastically as T/ μ decreases In high range [1.4-2.0], it changes slightly as T/ μ increases

PERT > RENO and CUBIC in T/ μ range [1.0 - 1.4]

PERT > RENO & PERT \approx CUBIC in T/ μ range [1.4 - 1.8]

PERT > RENO and CUBIC in loss rate range [0.02 - 0.06]

Introduction	Background	Experiment ○○○○○○●○○	Summary	Back-up
Linux Test				
Test Bed				

Bandwidth 15 Mbps Delay 45 ms Buffer 500 Kb Avatar 1080p HTTP streaming

Introduction	Background	Experiment ○○○○○○○●○	Summary	Back-up
Linux Test				
Test Results				

PERT helps to reduce the playback glitches

TCP Variants	PERT	RENO	CUBIC
Late Picture Skipping #	5.5	33.5	30.5
Audio Output Starving #	3.0	11.0	7.5

PERT responses early before packet loss. PERT adjusts the window smoothly.

Introduction	Background	Experiment 000000000	Summary	Back-up
Conclusions				

- PERT and CUBIC push T/ μ constraint to roughly 1.4.
- PERT > RENO, over all T/μs, loss rates and start-up delays.
- PERT > CUBIC, over low T/µs, high loss rates and strict start-up delays constraints.

Introduction	Background	Experiment	Summary	Back-up
Future Work				

- Carry out more evaluations and comparisons against other protocols.
- Deploy and measure PERT in error-prone wireless networks.

Introduction	Background	Experiment	Summary	Back-up

Thank You !

Introduction	Background	Experiment	Summary	Back-up
Probabilisti	c Early Respons	se Parameters		

The parameters are currently fixed, and can be chosen adaptively

- $T_{min} = 5ms$
- $T_{max} = 10ms$
- $P_{max} = 0.05$

Introduction	Background	Experiment ocococococo	Summary	Back-up
α adjustment				

Steady state throughput equations: $\beta = -\beta + p' + p' + p' + p'$

$$\beta_{PERT}(\boldsymbol{p} + \boldsymbol{p}' - \boldsymbol{p} * \boldsymbol{p}') / \alpha_{PERT} = \beta_{TCP} * \boldsymbol{p} / \alpha_{TCP}$$

- *α*_{TCP} = 1
- $\beta_{PERT} = \beta_{TCP}$
- So $\alpha_{\textit{PERT}} = p + p' p * p' / p \approx 1 + p' / p$