TCP-Friendliness of SCTP and Concurrent Multipath Transfer (CMT)

ICCRG meeting **@PFLDNET**

Nov 28-29 2010, Lancaster, PA, USA

Outline

- Background on TCP-Friendliness (TCP-F)
- TCP-F of single-homed SCTP
 - Motivation, SCTP vs. TCP mechanics
 - Experimental Framework
 - Results and Analysis
 - Conclusions
- TCP-F of SCTP-based CMT
 - Motivation
 - Experimental Framework
 - Results and Analysis
 - Discussion and Conclusions

Background: TCP-Friendliness (TCP-F)

Background: TCP-Friendliness (TCP-F)

TCP-Friendliness (TCP-F)

 "definition": a non-TCP flow should not consume more resources than a confirming TCP flow under the same conditions + implement some form of congestion control mechanism

* by Mahdavi and Floyd (1997), revised by Padhye (1998) and others later on

SCTP QualNet Module

• Comprehensive SCTP simulation module for the QualNet simulator

TCP-Friendliness of single-homed SCTP

SCTP vs. TCP Mechanics

- Transport Protocol Overheads
 - Transport PDU headers
 - Message-based (SCTP) vs. byte-based transmission (TCP)
 - Transport ACKs
- Congestion Control Mechanisms
 - SCTP is "similar" to TCP but already has some of the TCP enhancements (SACK, ABC, initial cwnd size, ...)

Hypothesis:

SCTP throughput may be better than TCP's under the same conditions.

Experimental Framework

- Case-I: Two flows start at the same time (how two flows grow together?)
- **Case-II**: Latter flow starts after the earlier is at steady-state (how one flow gives way to another flow?)
- **Metrics**: Throughput, Transport Load, Goodput, Fairness Index, Link Utilization, System Utilization

Flows Start at the Same Time

TCP-SACK and SCTP flows grow together

TCP-SACK and SCTP flows grow together

One Flow gives way to another Flow

SCTP gives way to TCP-SACK

SCTP gives way to TCP-SACK

TCP-SACK gives way to SCTP

TCP-SACK gives way to SCTP

17

Single-homed SCTP is TCP-friendly though it achieves higher throughput than TCP just as TCP-SACK or TCP-Reno perform better than TCP-Tahoe

TCP-Friendliness of CMT*

* Experimental extension to SCTP (J. Iyengar, PEL @Univ. of Delaware, 2006)

Motivation

- TCP-F is defined for end-to-end transport connections over a *single-path*
- J. Iyengar et. al. studied performance of CMT with the assumption of *bottleneck-independent* topology

How does CMT behave **when the** *tight link is shared* between the CMT subflows and other TCP flows?

Experimental Framework

• **Metrics**: Per-flow Throughput, Avg. flow Throughput, Fairness Index

Research Questions

- What is the bandwidth share of two-homed CMT compared to two independent TCP or SCTP flows?
- What is *the cost* of introducing one twohomed CMT flow into the network compared to two independent TCP or SCTP flows?

(I) Introducing two TCP flows: all TCP flows get an equal share of the bandwidth.

(II) Introducing two SCTP flows: SCTP flows get >= share of the bandwidth compared to TCP flows.

(III) Introducing one two-homed CMT flow*: CMT flow gets >= share of the bandwidth compared to two TCP or SCTP flows

*CMT shares TSN space and ACK and more resilient to losses (J. lyengar, 2006)

Results

Results

Two-homed CMT is TCP-friendly though it achieves higher throughput than two TCP flows just as two TCP-Reno flows would outperform two TCP-Tahoe flows

Discussion and the End...

• Other CMT-like schemes (CP, MuITFRC, muITCP, MPAT, PA-MuITCP, MPTCP, ...)

 Criticism to TCP-Friendliness (i.e, Flow-Rate Fairness) – Cost Fairness (B. Briscoe)

.TCP-F (or another fairness criteria) should include multihoming and CMT!