
A Model for Detecting Transport Layer Data Reneging
Nasif Ekiz

Computer and Information Sciences Department
University of Delaware

Newark, Delaware 19716

nekiz@udel.edu

Paul D. Amer
Computer and Information Sciences Department

University of Delaware
Newark, Delaware 19716

amer@udel.edu

ABSTRACT
Data reneging occurs when a data receiver first SACKs data, and
later discards that data from its receiver buffer prior to delivering
it to the receiving application or socket buffer. Today’s reliable
transport protocols such as TCP and SCTP are designed to
tolerate data reneging. We argue that this design assumption is
wrong, in part based on a hypothesis that data reneging rarely if
ever occurs in practice. To support our hypothesis, we present a
model for detecting instances of data reneging by analyzing traces
of TCP traffic. Using this model, we will investigate the frequency
of data reneging in Internet traces provided by CAIDA.

Categories and Subject Descriptors
C.2.5 [Local and Wide-Area Networks]: Internet (e.g., TCP),
C.2.6 [Internetworking]: Standards (TCP, SACK)

General Terms
Measurement, Verification.

Keywords
Data reneging, SACK, SCTP, TCP.

1. INTRODUCTION
Transmission Control Protocol (TCP) [14] uses sequence
numbers and cumulative acknowledgments (ACKs) to achieve
reliable data transfer. A TCP data receiver uses sequence numbers
to sort arrived data segments. Data arriving in expected order, i.e.,
ordered data, is cumulatively ACKed (herein ACKed) to the data
sender. The data sender assumes the data receiver accepts
responsibility of delivering ACKed data to the receiving
application, and deletes all ACKed data from its send buffer,
potentially even before that data is delivered to a receiving
application.

The receive buffer consists of two types of data: ordered data
which has been ACKed but not yet delivered to the application,
and out-of-order data that resulted from loss or reordering in the
network. A correct TCP data receiver implementation must not
delete ACKed data without first delivering it to the receiving
application since the data sender may remove ACKed data from

its send buffer.

The Selective Acknowledgment Option (SACK), specified in
RFC 2018 [9], is an extension to TCP’s cumulative ACK
mechanism, and is used by a data receiver to acknowledge (herein
SACK) arrived out-of-order data to the data sender. The intent is
that SACKed data do not need to be retransmitted during loss
recovery. Prior research [1, 2, 5] showed that SACK improves
TCP throughput when multiple losses occur in the same window.

Deployment of the SACK option in TCP connections is an
increasing trend. In 2001, 41% of the web servers tested were
SACK-enabled [12]. In 2005, SACK-enabled web servers
increased to 68% [10]. All recent versions of FreeBSD, Linux,
Mac OS, OpenBSD, OpenSolaris, Solaris, and Windows create
SACK-enabled TCP connections by default.

Data receiver reneging (herein data reneging) occurs when a data
receiver SACKs data, and later discards that data from its receiver
buffer prior to delivering it to the receiving application or socket
buffer. TCP is designed to tolerate data reneging. Specifically
RFC 2018 states: “The SACK option is advisory, in that, while it
notifies the data sender that the data receiver has received the
indicated segments, the data receiver is permitted to later discard
data which have been reported in a SACK option”. Data reneging
might happen, for example, when an operating system needs to
recapture previously allocated memory for another process, say to
avoid deadlock. Data reneging might happen in operating systems
such as FreeBSD, Linux and Mac OS. For example, in FreeBSD
and Mac OS, the sysctl option net.inet.tcp.do_tcpdrain turns
on/off data reneging support [7].

Because TCP is designed to tolerate data reneging, a TCP data
sender must retain copies of all transmitted data in its send buffer,
even SACKed data, until they are ACKed. Then, if data reneging
does occur, eventually the sender will timeout on the reneged
data, delete all SACK information, and retransmit the reneged
data. The data transfer thus remains reliable. Unfortunately if data
reneging does not happen, SACKed data is wastefully stored in
the send buffer until ACKed.

We argue that SACK’s design assumption to tolerate data
reneging is wrong. This opinion is based on: (1) a hypothesis that
data reneging rarely if ever occurs in practice, and (2) research
demonstrating potential improved performance if SACKed data
were not renegable.

In Section 2, we further present the motivation to detect data
reneging instances. Then Section 3 presents the model to detect
data reneging instances based on Internet trace files provided by
Cooperative Association for Internet Data Analysis (CAIDA)
[15]. Section 4 presents results of verifying our model. Section 5
identifies several past methodologies to infer TCP behavior, and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’10, Month 1–2, 2010, City, State, Country.
Copyright 2010 ACM 1-58113-000-0/00/0010…$10.00.

Section 6 presents our on-going research to apply the model to
TCP traces.

2. DOES DATA RENEGING HAPPEN?
Data reneging is a transport layer behavior of which we know
little about its frequency of occurrence in practice. This section
provides motivation to detect data reneging instances in reliable
transport protocols such as TCP and SCTP.

To motivate the study of data reneging, we first need to
understand the potential gains of a transport protocol that does not
tolerate data reneging. For that, we present a brief background on
Non-Renegable Selective Acks (NR-SACKs) [4].

2.1 NR-SACKs
NR-SACK is a new ack mechanism proposed for the Stream
Control Transmission Protocol (SCTP) [16]. With the NR-SACK
extension, an SCTP data receiver takes responsibility for
selectively acked data (NR-SACKed). In that case, an SCTP data
sender no longer needs to retain copies of NR-SACKed data in its
send buffer until ACKed. Just as with ACKed data, NR-SACKed
data can be removed from the send buffer immediately on the
receipt of the NR-SACK.

With NR-SACKs, the main memory allocated for the send buffer
is better utilized. Natarajan et al. [11] present send buffer
utilization results for unordered data transfers over SCTP under
mild (~1-2%), medium (~3-4%) and heavy (~8-9%) loss rates for
NR-SACKs vs. SACKs. For the bandwidth-delay parameters
studied, the memory wasted by assuming SACKed data could be
reneged was on average ~10%, ~20% and ~30% for the given loss
rates, respectively.

NR-SACKs also can improve end-to-end application throughput.
To send new data, in TCP and SCTP, a data sender is constrained
by three factors: the congestion window (congestion control), the
advertised receive window (flow control) and the send buffer.
When the send buffer is full, no new data can be transmitted even
when congestion and flow control mechanisms allow. When NR-
SACKed data is removed from the send buffer, new application
data can be read and potentially transmitted.

Yilmaz et al. [17] investigate throughput improvements for NR-
SACK vs. SACK. The authors show that the throughput achieved
with NR-SACKs is always ≥ the throughput observed with
SACKs. For example, using NR-SACKs, the throughput for an
unordered data transfer over SCTP is improved by ~14% for a
data sender with 32KB send buffer under low (~0-1%) loss rate.

2.2 Motivation to Study Data Reneging
Consider designing reliable transport protocols to NOT tolerate
data reneging. In such a case, the send buffer utilization would be
always optimal, and the application throughput could be improved
for data transfers with constrained send buffers. Current transport
protocols employing SACKs (TCP, SCTP) suffer because of the
assumption that data reneging may happen.

If we can document that data reneging never happens or happens
rarely, we can argue that reliable transport protocols should be
modified to assume all selectively acked data is non-renegable. As
a simple example, assume that data reneging happens rarely, say
once in 100,000 TCP flows.

Case A (current practice): TCP tolerates data reneging to achieve
reliable data transfer in a single data reneging connection. 99,999
non-reneging connections potentially waste memory allocated for
send buffer, and achieve lower application throughput. One
reneging connection operates without interruption.

Changing transport protocols that currently support data reneging
into non-reneging transport protocols requires minor
modification. First, the semantics for SACK are changed from
advisory to permanent. Second, if a data receiver does have to
renege, we propose the data receiver must RESET the connection.

Case B (proposed change): TCP does not tolerate data reneging.
99,999 non-reneging connections potentially have improved
performance, and 1 reneging connection is aborted. (Given the
dire situations requiring a receiver to renege, aborting the
reneging connection is unlikely to make matters worse.)

We hypothesize that few (if any) connections will be penalized,
and the large majority of non-reneging connections will
potentially benefit from better send buffer utilization and
increased throughput. The problem is that data reneging has never
been studied by the research community. No one knows what
percentage of connections renege. The key issue – does data
reneging occur or not?

3. A MODEL TO DETECT RENEGING
To begin to answer this key issue, this section presents a model to
passively detect data reneging instances occurring in Internet
traces. First, we present how a TCP or SCTP data sender infers
data reneging in sections 3.1 and 3.2, respectively. In section 3.3,
we introduce our model to detect data reneging instances.

3.1 Detecting Reneging at TCP Data Sender
In the current TCP and TCP SACK specifications, a TCP data
sender has no design to infer data reneging. To tolerate data
reneging, a TCP data sender keeps copies of SACKed data in its
send buffer until that data is ACKed. To achieve reliable data
transfer, the following retransmission policy is specified in [9] for
a data sender in the case of reneging.

For each segment in the send buffer that is SACKed, an associated
“SACKed” flag is set. The segments with “SACKed” bit set are
not retransmitted until a timeout happens. At the timeout, the TCP
data sender clears all “SACKed” information due to possible data
reneging, and retransmits the segment at the left edge of the send
buffer.

3.2 Detecting Reneging at SCTP Data Sender
SCTP supports data reneging detection at the data sender. Unlike
TCP’s constrained number on the reported SACK options (4 at
maximum), an SCTP data receiver can generate SACK chunks
with a large number of SACK options. For example, for a path
with MTU=512 bytes, a SACK chunk can report 116 SACK
options (20 bytes for IP header, 12 bytes for SCTP common
header, 16 bytes for SACK chunk header + 116 * 4 byte SACK
options).

Thus, an SCTP data sender receives a more accurate view of the
data receiver’s buffer, and can accurately infer data reneging by
inspecting SACK options. If a new SACK arrives and previously

SACKed data is not present, the SCTP data sender infers data
reneging, and marks the reneged data for retransmission.

Let us look at an example data reneging scenario in Figure 1 and
see how an SCTP data sender infers data reneging in detail.
Without loss of generality, the example assumes 1 byte of data is
transmitted in each data packet. A data sender sends packets 1
through 6 to a data receiver. Assume packet 2 is lost. The data
receiver receives packets 3 through 6, and sends ACKs and
SACKs to notify the data sender about the out-of-order data.
When ACK 1 SACK 3-6 arrives at the data sender, the state of the
receive buffer is known to be: ordered data 1 is delivered or
deliverable to the receiving application, and out-of-order data 3-6
is in the receive buffer.

Before packet 2 is retransmitted via a fast retransmission, assume
the data receiver’s operating system runs short of main memory,
and reneges all of the out-of-order data in the receive buffer.
When packet 2’s retransmission arrives at the data receiver, ACK
2 is sent back to the data sender with no SACKs.

When the data sender receives ACK 2, data reneging is detected.
Previously SACKed out-of-order data 3-6 is not still being
SACKed. Data 3-6 is marked for retransmission.

ACK 2 SACK 7-7 is sent when data 7 arrives out-of-order. This
SACK also implies data reneging (for data 3-6) if the previous
ACK 2 was lost.

Figure 1. Detecting data reneging at SCTP data sender

3.3 Detecting Reneging at a Router
To detect an SCTP data reneging instance, a data sender infers the
state of the data receiver’s receive buffer through ACKs and
SACKs. Even though TCP has no mechanism to detect data
reneging instances, data reneging can be detected by analyzing
TCP ack traffic, and inferring the state of the receiver’s buffer.

For a TCP data receiver, the state of the receive buffer can be
learned with the ACKs and SACKs, and updated through the new
acks observed at an intermediate router. The state consists of a
cumulative ACK value (stateACK) and a list of out-of-order data
blocks (stateSACK blocks) known to be in the receive buffer.

The example in Figure 1 assumed all ack traffic arrives to the data
sender and data reneging is detected. Consider the example
scenario when the ack traffic is monitored by an intermediate
router. In the example, the data reneging instance is detected
when all of the acks arrive at the data sender. In practice, acks

may traverse different paths, arrive at the intermediate router out-
of-order, or get lost in the network before reaching the router.

Figure 2 shows the same data transfer where only three acks are
monitored at the intermediate router. On seeing ACK 1 SACK 3-
4, the router determines the state of receive buffer is: ordered data
1 is delivered or deliverable to the receiving application
(stateACK 1) and out-of-order data 3-4 is in the receive buffer
(stateSACK 3-4). ACK 1 SACK 3-6 updates this state by adding
out-of-order data 5-6 as SACKed (stateSACK 3-6). When ACK 2
SACK 7-7 is received and compared to the state of receive buffer
(stateACK 1, stateSACK 3-6), an inconsistency is observed and
data reneging is detected since data 3-6 are not SACKed.

Figure 2. Detecting data reneging by an intermediate router

Even though the number of acks observed at the intermediate
router was limited, the state of the receive buffer is as for Figure
1. Because a SACK option reports all consecutive out-of-order
segments as a block, the intermediate router can infer the
complete state of the receive buffer most of the time.

Constructing the state of the receive buffer as accurately as
possible is based on the actual number of SACK blocks at the data
receiver. If the number of SACK blocks at a data receiver is more
than four, then the data receiver is unable to report full SACK
information. In this case when consecutive acks get lost, the
intermediate router will have less accurate state information.

Table 1 presents the number of SACK options in TCP segments
based on a few randomly selected trace files from the Internet
backbone captured in June 2008. Recall that at maximum 4 SACK
options can be included in a TCP segment. For segments with 1,
2, or 3 SACK option(s), the TCP header length is checked to
determine if another SACK option could have been appended to
the TCP header. TCP segments with 4 SACK options already
have a full TCP header. Less than 0.5% of the TCP segments that
include SACK options do not have enough space for another
SACK option. Assuming all TCP traces follow a similar pattern,
the state of the receive buffer can be constructed accurately most
of the time.

Even though the state of receive buffer may be inaccurate, having
a partial state of the out-of-order data in the receive buffer would
be still enough to detect data reneging instances. The reasoning is
that we expect a reneging data receiver will purge all of the out-
of-order data as occurs in FreeBSD [7]. Since the intermediate
router has state information about out-of-order data, data reneging

instance will be detected when acks with no SACK option are
observed.

Table 1. Number of SACK options in TCP segments

TCP Segments with
n SACK options

Enough space
for another

SACK option

Not enough space
for another

SACK option

n=1 ~88% 0%

n=2 ~11% 0%

n=3 0.7% 0.20%

n=4 n/a 0.15%

Total number of TCP segments 780,798 (100%)

Our software to detect data reneging instances (Reneg-detect)
constructs the state of the receive buffer for TCP flows that
contain SACKs. An inferred state of the receive buffer is
compared with new acks to check for consistency. When the
comparison is consistent, the receive buffer state is updated.
Otherwise data reneging instance is detected and reported.

We now describe our model for constructing the state of receive
buffer at an intermediate router. The state consists of a cumulative
ACK value and a list of ordered out-of-order data blocks (SACK
blocks) known to be in the receive buffer.

The cumulative ACK value holds the highest ACK value observed
for the TCP flow, and is updated when a higher ACK value is
observed. When the cumulative ACK value is updated, any SACK
blocks below the cumulative ACK value are deleted from the
state.

Figure 3 presents our model for constructing and updating the
SACK block state of the receive buffer. The state is initialized
with the first TCP ack observed in a flow. If the ack has no SACK
option(s), only the cumulative ACK value is recorded. If the ack
includes SACK option(s), each one is added as a SACK block to
the state.

When the next TCP ack is observed, each reported SACK option
(corresponding to a New SACK Block (N) in Figure 3) is
compared with the SACK blocks in the receive buffer state. Each
SACK block in the receive buffer state is represented by Current
SACK Block (C) in Figure 3.

The comparison of a new SACK block (N) and a current SACK
block (C) is done both on the left (L) and right (R) edges. If each
SACK block is thought of as a set, a comparison of two sets must
result in exactly one of four cases:

1. N is a superset of C ()

2. N is a proper subset of C ()

3. N intersects with C, and N and C each have at least 1 byte of
data not in C and N, respectively
(()

4. N does not intersect with C ()

Note that the above cases are mutually exclusive. Each case is
described in turn. For the given examples, assume an initial
receive buffer state as follows: the cumulative ACK value is 8

(stateACK 8), and there is one SACK Block (stateSACK 12-15)
with left and right edges 12 and 15, respectively.

Case 1: When a new SACK block (e.g., SACK 12-17) is a
superset of a current SACK block (e.g., stateSACK 12-15), it
means more out-of-order data had been received at the data
receiver. The current SACK block is updated to reflect the new
SACK block. The update may be in terms of a left edge extension,
a right edge extension or both. After the update, the new SACK
block is compared with the next SACK blocks in the state. The
reasoning is that a new SACK block may be the superset of a
number of SACK blocks in the receive buffer state due to possible
ack reordering, and may fill a gap between two SACK blocks.

Case 2: When a new SACK block (e.g., SACK 12-13) is a proper
subset of a current SACK block (e.g., stateSACK 12-15), the
comparison implies data reneging (out-of-order data 14-15 had
been deleted from the receive buffer). An instance of data
reneging is logged for future deeper analysis.

Case 3: Data reneging is detected similarly when a new SACK
block (e.g., SACK 14-20) intersects with a current SACK block
(stateSACK 12-15). Such a case would result when a data receiver
purges some, but not all, of the out-of-order data, and later
receives more out-of-order data. The new ack informs the arrival
of new out-of-order data, 16-20, as well as the removal of
previously SACKed data, 12-13. The state is not updated (to catch
more inconsistencies) until the cumulative ACK is advanced
beyond the SACK blocks that trigger data reneging instances.

Case 4: If a new SACK block (e.g., SACK 22-25) and a current
SACK block (e.g., stateSACK 12-15) do not intersect, the new
SACK block is compared with the next SACK block in the state.
If the new SACK block reported is disjoint with all of the SACK
blocks in the state, the new SACK block is added to the receive
buffer state. The updated receive buffer state becomes stateACK
8, stateSACK1 12-15, stateSACK2 22-25.

The model detects data reneging instances only when some SACK
options are included in the acks. If a data receiver purges all out-
of-order data in the receive buffer, no SACK options are reported.
In such a case, the receive buffer state would have a number of
SACK blocks, and the new ack reports no SACK blocks (even
though TCP options field has enough space to report at least one
SACK option). Reneg-detect also infers such data reneging
instances.

Data reneging may be inferred spuriously if acks are reordered
before arriving at the intermediate router. To cope with
reordering, a check is performed on the protocol fields: IP ID and
TCP ACK. When one or both of the fields of an ack is smaller
than the previous ack’s values, reordering is detected. Reordered
acks are not used to update the receive buffer state; they are
discarded.

4. MODEL VERIFICATION
Reneg-detect was verified with synthetic TCP flows that mimic
data reneging behavior. Data reneging flows were created using
text2pcap tool, and all of the data reneging flows tested were
identified correctly as reneging.

Reneg-detect also was verified by analyzing 100s of TCP flows
from Internet traces provided by CAIDA. Initially it seemed that

data reneging was happening frequently. On closer inspection
however, it turned out that the generation of SACKs in many TCP
implementations was incorrect (!) according to RFC 2018.
Sometimes SACK information that should have been sent was
not. Sometimes the wrong SACK information was sent. These
misbehaviors wrongly gave the impression that data reneging was
occurring.

Our discovery led us to a side investigation to verify SACK
generation behavior of TCP data receivers for a wide range of
operating systems [3]. Now, we are developing a methodology
for verifying SACK behavior, and we will apply the methodology
to report misbehaving TCP stacks.

Based on the results of the model verification effort, we updated
Reneg-detect to identify these misbehaviors, and not report them
as instances of data reneging.

5. RELATED WORK
Previous studies employed passive measurements to infer specific
protocol behavior by analyzing large number of TCP flows. In
those passive measurement studies, collected trace files were
analyzed to infer the specific TCP behavior.

Paxson [13] presents tcpanaly, a tool which automatically
analyses the correctness of TCP implementations by inspecting
traces collected for bulk data transfers.

Fraleigh [6] describes the architecture and capabilities of the
IPMON system which is used for IP monitoring at Sprint IP
backbone network. IPMON consists of passive monitoring
entities, a data repository to store collected trace files and an
offline analysis platform to analyze the collected data. The authors
analyze individual flows and traffic generated by different
protocols and applications and present statistics such as traffic
load (weekly and daily), traffic load by applications (web, mail,
file transfer, p2p, streaming), traffic load in flows. Also TCP
related statistics such as packet size distribution, RTT, out-of-
sequence rate, and delay distributions are presented.

In Jaiswal [8], the authors introduce a passive measurement
technique to infer and keep track of congestion window (cwnd)
and round trip time (RTT) of a TCP data sender. To infer data
senders’ cwnd, the authors construct a replica of the data sender’s
TCP state using a finite state machine (FSM). FSM is updated
through ACKs and retransmissions seen at the data collection
point.

6. WORK IN PROGRESS
To detect data reneging instances, we need TCP flows in which
some SACK options are observed during the data transfer. For
that, we are filtering CAIDA traces to obtain only TCP flows with
SACK options to analyze them with Reneg-detect.

The summary of Internet trace files provided by CAIDA by
(year/data collection machine/number of traces available) is as
follows:

• 2008/equinix-chicago/10

• 2008/equinix-sanjose/6

• 2009/equinix-chicago/12

• 2009/equinix-sanjose/12

• 2010/equinix-chicago/3

• 2010/equinix-sanjose/3

The total duration of each trace is 1 hour and consists of 60 one
minute traces. In our lab we do not have enough computation
power to analyze all of the traces provided. Instead we are
planning to analyze TCP flows from each data set with total
duration of 2-3 minutes. The minutes to be used will be chosen
randomly.

We are also looking for TCP trace files from other domains such
as wireless networks where the loss rate is higher. Our goal is to
analyze millions of TCP flows using Reneg-detect, and document
the frequency of data reneging instances. Based on these
empirical observations, we will provide the first documentation of
transport layer data reneging in the literature.

7. ACKNOWLEDGMENTS
The authors would like to thank Abuthahir Habeeb Rahman,
Jonathan Leighton, Aasheesh Kolli and Ersin Ozkan for the
valuable discussions and comments while developing this paper.
This work is supported by the University Research Program,
Cisco Systems, Inc.

8. REFERENCES
[1] Allman, M., Hayes, C., Kruse H., and Ostermann, S. 1997.

TCP performance over satellite links. 5th Int’l Conf. on
Telecommunications Systems. 3 (1997).

[2] Bruyeron, R., Hemon, B., and Zhang, L. 1998.
Experimentations with TCP selective acknowledgment.
SIGCOMM Comput. Commun. Rev. 28, 2 (Apr. 1998), 54-
77. DOI= http://doi.acm.org/10.1145/279345.279350.

[3] Ekiz, N., Rahman, A. H., and Amer, P. D. Misbehaviors in
SACK generation (submitted for publication).

[4] Ekiz, N., Amer, P., Natarajan, P., Stewart, R., and Iyengar, J.
2010. Non-renegable selective acks (NR-SACKs) for SCTP.
IETF Internet Draft (work in progress).
tools.ietf.org/id/draft-natarajan-tsvwg-sctp-nrsack-06.txt

[5] Fall, K. and Floyd, S. 1996. Simulation-based comparisons
of Tahoe, Reno and SACK TCP. SIGCOMM Comput.
Commun. Rev. 26, 3 (Jul. 1996), 5-21. DOI=
http://doi.acm.org/10.1145/235160.235162.

[6] Fraleigh, C., Moon, S., Lyles, B., Cotton, C., Khan, M.,
Moll, D., Rockell, R., Seely, T., and Diot, S. C. 2003.
Packet-Level traffic measurements from the Sprint IP
backbone. IEEE Network. 17, 6 (Nov. 2003), 6-16. DOI=
http://dx.doi.org/10.1109/MNET.2003.1248656.

[7] FreeBSD TCP Implementation.
www.freebsd.org/cgi/cvsweb.cgi/src/sys/netinet/

[8] Jaiswal, S., Iannaccone, G., Diot, S. C., Kurose, J., and
Towsley, D. 2004. Inferring TCP connection characteristics
through passive measurements. IEEE INFOCOM, 3 (Mar.
2004), 1582-1592. DOI=
http://dx.doi.org/10.1109/INFCOM.2004.1354571.

[9] Mathis, M., Mahdavi, J., Floyd, S., and Romanow, A. 1996.
TCP selective acknowledgment options. RFC 2018.

[10] Medina, A., Allman, M., and Floyd, S. 2005. Measuring the
evolution of transport protocols in the internet. SIGCOMM
Comput. Commun. Rev. 35, 2 (Apr. 2005), 37-52. DOI=
http://doi.acm.org/10.1145/1064413.1064418.

[11] Natarajan, P., Ekiz, N., Yilmaz, E., Amer, P. D., Iyengar, J.,
and Stewart, R. 2008. Non-Renegable Selective
Acknowledgments (NR-SACKs) for SCTP. IEEE
International Conference on Network Protocols. (October
2008), 187-196. DOI=
http://dx.doi.org/10.1109/ICNP.2008.4697037.

[12] Pahdye, J. and Floyd, S. 2001. On inferring TCP behavior. In
Proceedings of the 2001 Conference on Applications,
Technologies, Architectures, and Protocols For Computer
Communications (San Diego, California). SIGCOMM '01.
ACM, New York, NY, 287-298. DOI=
http://doi.acm.org/10.1145/383059.383083.

[13] Paxson, V. 1997. Automated packet trace analysis of TCP
implementations. In Proceedings of the ACM SIGCOMM '97

Conference on Applications, Technologies, Architectures,
and Protocols For Computer Communication (Cannes,
France, Sep. 14 - 18, 1997). M. Steenstrup, Ed. SIGCOMM
'97. ACM, New York, NY, 167-179. DOI=
http://doi.acm.org/10.1145/263105.263160.

[14] Postel, J. 1981. Transmission control protocol. RFC 793.

[15] Shannon, C., Aben E., Claffy, K., Andersen, D., The CAIDA
Anonymized 2008, 2009, 2010 Internet Traces.
http://www.caida.org/data/passive/

[16] Stewart, R. 2007. Stream control transmission protocol. RFC
4960.

[17] Yilmaz, E., Ekiz, N., Natarajan, P., Amer, P. D., Leighton, J.
T., Baker, F., and Stewart, R. R. 2010. Throughput analysis
of Non-Renegable Selective Acknowledgments (NR-SACKs)
for SCTP. Comput. Commun. 33, 16 (Oct. 2010), 1982-
1991. DOI=
http://dx.doi.org/10.1016/j.comcom.2010.06.028.

Figure 3. Data Reneging Detection Model

