Revisiting A Soft-State Approach to Managing
Reliable Transport Connections

GoONCA GURSUN  IBRAHIM MATTA KARIM MATTAR
goncag@u. edu natta@u. edu kmattar @u. edu

Abstract—We revisit the problem of connection management yacejver to distinguish new from old connections. Though

for reliable transport as part of our clean-slate Recursive Inter .
Net Architecture (RINA) [5]. At one extreme, a pure soft-stap CONNection management may leverage data and acknowl-

(SS) approach (as in Delta-t [15]) safely removes the state of €édgements to piggyback signaling information, and so data
a connection at the sender and receiver once the state timersmay be falsely acknowledged (data loss) or duplicated, it
expire without the need for explicit removal messages. And js a separatefunction from data-transfer functions such as
new connections are established without an explicit handshaking congestion control, error control, flow contragtc. Besides

phase. On the other hand, a hybrid hard-state/soft-state (HSSS) el . )
approach (as in TCP) uses both explicit handshaking as well as data reliability, later in 1996, TCP's three-way handshake

more limited timer-based management of the connection’s state. got overloaded with protection mechanisms against tratispo
In this paper, we consider the worst-case scenario of reliable level attacks [3]. This results in the coupling of two ditfet
single-message communication. Using simulation, we evaluatemechanisms, state synchronization for reliability, ancusiy.
Various da%g’l%;ﬂﬁ)sn)'“atﬁér?gb%fsgr?e"s‘?scigegg d(vxlgt]vcgflfigtn?it%%ts In our RINA architecture, we decouple these two mechanisms
(high message loss rate and variable channel delays). Our results{Tom €ach other. How the security issues are handled in RINA
show that the SS approach is more robust, and has lower iS out of the scope of this paper and discussed in detail in [4]
message overhead and higher goodput. Thus, SS presents thetoe In this paper, we focus only on connection management for
choice for reliable applications, especially those operating over reliability, assuming single-message communication. Ve a

bandwidth-constrained, error-prone networks. This result also highlight some features of a clean-slate transport design
suggests that within a clean-slate transport architecture, explit )

connection messages for data reliability are not needed, and soa ~ Though over a decade ago, we have seen many pioneering
simple common packet interface based on Delta-t—rather than work in the area of reliable transport—see [14], [2], [6], [15
TCP vs. T/TCP vs. UDP,etc.— can be provided to support both  [13] for examples—this body of work has focused on the
tranlsactt_lonal and bulk, reliable and unreliable (unacknowledged) correctness aspects of reliable delivery but not perforaan
applications. From the correctness point of view, Watson's theory states
that one can achieve reliability using an SS approach, as lon
. INTRODUCTION as one can bound exactly three timers for: (1) the maximum

Reliable end-to-end transport communication has belf€ that a sender expends retransmitting a data packet (G),
studied since the 70s and various mechanisms have made thel the maximum time that an acknowledgment is delayed

i : ; y the receiver (UAT), and (3) the maximum time that a
way into TCP [11], the reliable transport protocol widelyeds packet is allowed to live inside the network (MPL). Watson

gpues that all these times are naturally bounded in actual

data loss and duplication. Richard Watson in the 80’'s [1

provided a fundamental theory of reliable transport, whgre :
connection management requires only timers bounded by?3d receiver) can be bounded by a small factor of MPL.

small factor of the Maximum Packet Lifetime (MPL). Based\Ote that TCP itself, despite its use of explicit connection

on this theory, Watsoret al. developed the Delta-t protocol Management messages, uses a connection-state timer (at the
[6], which we classify as a pure soft-state (SS) protocol sender). And TCFhas touse such a state timer in order to
i.e. the state of a connection at the sender and receiver carOpgrate correctly. Thus, from a correctness point of view,
safely removed once the connection-state timers expifeowtt 1€'€ iS no way around the need for state timers, only that
the need for explicit removal messages. And new connectioh§P relies on less of them.

are established without an explicit handshaking phase.
the other hand, TCP uses both explicit handshaking as wi
as more limited timer-based management of the connection’s From a performance point of view, to the best of our
state. Thus, TCP's approach, including variants such asAdUlknowledge, there is no work that compares the hybrid HS+SS
[9] and T/TCP [10], can be viewed as a hybrid hard-state/sofipproach of TCP against the arguably simpler SS approach
state (HS+SS) protocol. of Delta-t. In this paper, we provide a first performance com-

Motivated by the design of a clean-slate network archparison study. We consider the worst-case scenario ohielia
tecture [5], we had to question the design of every aspect §ihgle-messageommunication and study issues related to
the current Internet architecture. In this paper, we qoeséi data loss / abort / duplication due to inconsistent conogeti
specific design aspect of TCP, that of connection managemgi@tes at the sender and receiver or failure to establish a
for data reliability: Despite Watson’s theory, why does &onnection. Using simulation, we evaluate four approacbes
popular transport protocol, like TCP, manage its conneusio reliable transport in terms of correctness (with respedata
using both a state timer at the sender as well as explidfss and duplication) and robustness to bad network camditi

connection-management messages for opening and closiiigh message loss rate and variable channel delays). Our

connections? L oh b this full . _—
. . . .+ Obviously, this full-proof correctness assumes that the Mflarantee
Note that connection management is concerned with Maim the underlying network is not violated. Otherwise, aa only show

taining consistent view of connection-states at the seaddr correctness with high probability.

aller than MPL, connection-state timers (at both sender

r Contribution:



@ Host A Host B@ B Host A Host 8 {#D Host 6 @

DATA DATA

A—-B closed A—B closed A—B closed

AB closed | —"<<2
A-B closed Duplicate

Duplicate
accepted

accepted

(a) Normal case (b) Premature retransmission (c) Acknowledgment loss

Fig. 1: Two-Packet Protocol

results show that the SS approach is more robust, and hegresents a hard-state protocol, whereas five-packetgepts
lower message overhead and higher goodputr@ystness a hybrid hard-/soft-state protocal

we mean that performance does not precipitously degrade Note that although, from a correctness standpoint, we
under worse loss/delay conditions [8]. Thus, SS presemiste pelow that two-packet and three-packet may result in
the best choice for reliable applications, especially éhogyplicate connections being accepted, we include themin ou
operating over bandwidth-constrained, error-prone neta.o study to quantify, from a performance standpoint, how much
This result also suggests that within a clean-slate tramspgs|ative duplication they may cause for the benefit of a sampl
architecture, explicit connection messages for databi#itia  onnection management.

are not needed, and so a simple common packet interface baseJ'Due to lack of space, we refer the reader to [7] for detailed

on Delta-t—rather than TCP vs. T/TCP vs. UDR¢c— can ;
be provided to support both transactional and bulk, retiabPS€udo-codes (protocol state machines) of all protocols.

and unreliable (unacknowledged) applications. A. Two-Packet Protocol

Organization of the Paper: To detect data (packet) loss, this protocol uses positive
) . . acknowledgments. When there is data to send, the sender

_The rest of the paper is organized as follows: Section §pens a connection to the receiver and transmits the data
reviews various approaches to reliable transport. Sedlion message. Opening a connection means that control infaymati
presents our simulation model and results comparing foldf kept about the connection, which we refer tostate infor-
reliable transport approaches (including Delta-t and TCljation When the receiver receives the data message, it opens
under varying packet loss probability, and varying channgl connection, delivers the data message to the application,
delays that may cause premature retransmissions. We revigMids an acknowledgment message back to the sender, and
related work in Section IV. We outline some features of gnmediately closes the connection. Closing the connection
clean-slate transport design in Section V, and conclude thfxans removing the state information of the connection. A
paper in Section VI. normal conversation is illustrated in Figure 1(a).

I R T A If the sender does not receive the acknowledgment within
- RELIABLE TRANSPORTAPPROACHES an estimated retransmission timeout (RTO) duration, then i

We describe the basic operation of different reliable tran&etransmits the data message. Figure 1(b) illustrates dse c
port approaches for the worst-case scenario of reliablgisgn Where the retransmission timeout value is underestimétted,
a single message per conversation between a single serfB@Sender prematurely retransmits the data message. tSimce
and a single receiver, over a channel that may lose or f€c€iver closes the connection right after it sends the@skn
order messages.We say “worst case” since information from€dgment, it can not distinguish a premature retransmission
successive packets in a stream can only help the transg@HPlicate) from new data (new connection). Thus, the xegei
protocol, e.g, to identify a missing packet in the streanr@ccepts and delivers a duplicate to the application.
sequence or to keep the connection state alive (refreshed). ~ Another scenario that causes data duplication is when

In what follows, we review four approaches to reliabldhe network (channel) loses the acknowledgment. Figurg 1(c
transport [2] that we evaluate in this paper. They repréllustrates this case. If the acknowledgment is lost, thedse
sent a spectrum of solutions where the amount of expli¢Rtransmits the data message after RTO.
connection-management messages and the use of connectiondn [2], the correctness of the two-packet protocol is stddie
state timers vary: (1) thevo-packeiDATA and its ACK) pro- in detail, including the case of data messages falsely ac-
tocol has no connection-state timers nor explicit conoecti knowledged i(e., without being actually delivered) and hence
management messages, (2) ttieee-packetprotocol aug- lost. This latter problem is solved by introducing sequence
ments the two-packet protocol with an explicit connectiorumbers [14]. The sender appends to each new data message
management CLOSE message, (3) tfee-packet(TCP) a new sequence number that has not been recently used in its
protocol augments the three-packet protocol with explictommunication with the receiver. A sequence number is not re
connection-management (SYN and SYN+ACK) messages a#ged until all messages with that sequence number (in@udin
a connection-state timer at the sender, and (4) Dedta-t duplicates) have left the network. Note that thmplicitly
protocol augments two-packet using only connection-statequires knowledge of some Maximum Packet Lifetime (MPL)
timers at both the sender and receiver. Delta-t and its predgiaranteed by the network. Thus, the two-packet protocol
cessor (two-packet) represent soft-state protocolsetheeket (augmented with sequence numbers) does not lose data but

may accept duplicates.

2Throughout the paper, we use the terms “message” and “paakis- i
changeably. When we refer to “single-message” or “multi-messagnver- 31n this paper, we use “five-packet” and “TCP” interchanggahé we
sation/transfer/communication scenario, then we nesta messages. augment the basic five-packet with TCP’s connection-statertat the sender.



B. Three-Packet Protocol problem of data duplication. Unlike the five-packet protpco

To solve the duplication problem due to acknowledgmelterfﬁ]rﬁe%i?oﬂo explicit (separate) messages to open and blese t

loss, this protocol augments the two-packet protocol with a . .

acknowledgment for the ACK, which can be thought of as The sender and the receiver state timers are set to guar-

an explicit CLOSE connection-management message sentd\je€ that none of the messages (including duplicates)eof th

the sender. When there is data to send, the sender oper@Cti/@ connection will arrive to the ends after they close th
nection. Figure 3(a) illustrates the connection sifgtrhe

connection to the receiver and transmits the data message. - > :

When the receiver receives the data message, it opendidhe sender and the receiver. The sender starts its state i

connection, delivers the data message to the applicatimuiss whenever it sends a data message (new or retransmission).
[i¢ connection at the sender should be open long enough—

an acknowledgment message back to the sender, and w _ ’ -
for the CLOSE message from the sender before clearing th@hoted byStime—to receive the acknowledgment, which

connection-state. When the sender gets the acknowledgm&Rtlld be transmitted in the worst-case right before theivece
it transmits the CLOSE message to the receiver and closes #€ lifetime—denoted bitime—expires. Since the lifetime
connection. The receiver in turn closes the connection @nce’ @ packet is bounded by MPL, we have the following
gets the CLOSE message. Despite the extra CLOSE messé&gigtionship:

this protocol does not solve the duplication problem. If a 1)
delayed retransmission of a data message arrives at thieeece
right after the receiver closes the connection, the receive
wrongly opens a new connection and accepts a duplicate.

Stime = Rtime + M PL

@ Host A HostB @

@ Host A

G for DATA x expires
suspend G for DATA x+1

Host B@

LastDary

DATA X

C. Five-Packet Protocol

First DATA x+1

ACK x+1 lost
s

Rtime starts

e

Rtime

|
|
|
To avoid data duplication, two additional explicit Stime |
connection-management messages are introduced to open a l
connection. Figure 2(a) illustrates a normal conversatibn wel] »
the protocol (ala TCP). The sender transmits a synchrdoizat | || = \ -
SYN message to initiate the connection. The receiver redpon Wors case pattern|_FrsoATA x2
to the SYN message with a SYN+ACK message. The sender
then transmits the data message, which also acknowledges th
receiver's SYN, thus synchronizing the sender and receiver
ensuring that the initial SYN message is not a duplicatentfro
an old connection). Upon receiving the acknowledgment for
its data, the sender transmits an explicit CLOSE message and

closes the connection. Upon receiving the CLOSE message, The receiver starts its connection-state timer whenever it

the receiver closes its end of the connection. : .
. . receives (and accepts) a new data message. The receiwer stat

TCP follows this five-packet protocol. However, in TCPimer should be running long enough to receive all possible
after the sender sends the CLOSE message, it does fffansmissions of the data message in the presence of an
immediately close the connection, rather it waits forPL nefiaple (lossy) channel. This allows the receiver tacleat
to make sure that there is no packet in the network that belongecognize) duplicates of the data message. The connéstion
to this connection [11]. closed at the receiver after the last possible acknowledgme
for the connection is sent. Figure 3(b), reproduced from [6]
illustrates the worst-case multi-message conversatibdwesn
the sender and receivfer Denote byG, the maximum time a

MPL

resume G for DATA x+1

DATA x+1 attempts lost (| G = n x RTT

Rtime ends

(a) State Timers (b) Setting Timers

Fig. 3: Delta-t Protocol

@rosta Host 8 [@ Host & D

SYNx

A—B closed

D. Delta-t

b

(a) Normal case

Fig. 2: Five-Packet Protocol

Protocol

m
KA
W

(b) Connection abort

sender keeps retransmitting a data message before it gives u
and aborts the connection. #f is the maximum number of

X‘ T retransmissions for each data message, thean x RTO ~
data accepted e n x RTT. According to the Delta-t protocol [6], each data
‘% — packet has a timer initialized t& when it is first transmitted.
\ I Whenever a data packets-timer expires, the&-timers of all
ZMPL‘ | ABcosed fimitis reached| 3l other data packets are frozen hoping to successfully get the

acknowledgment, otherwise the connection is aborted aad th
application is informed.

Figure 3(b) shows the multi-message scenario when a new
data packet (whose sequence number is 1) is received
instantly, so in the worst caseé®time is started as early
as possible. Due to consecutive losses, théimer of the
previous data packet (whose sequence numbe) iexpires
while waiting for the acknowledgment ACKke for its last

_As noted above, the transport protocol inevitably assumegtransmission attempt, which in the worst case, will takeLM
either implicitly or explicitly, that the underlying netwlo to arrive. At this time instant, Delta-t [6] freezes ttietimers

(channel) provides a guarantee on the Maximum Packet Lifgf
time (MPL). The Delta-t protocol [15] thus exclusively e

all oustanding packets, thus data packet 1 has not yet
used up its maximum delivery tim&. Now when ACK z

on connection-management (state) timers that are bounged b
MPL. Delta-t is basically a two-packet protocol, augmenteds oy simpiicity, we assume that the receiver does not delayisgrits
by state timers at both the sender and receiver to solve #ugnowledgment.



arrives, in the worst case, due to ACK losses, data pacleErom a correctness standpoint, both Delta-t and five-packet
x + 1 keeps getting retransmitted until all i€s is consumed (ala TCP) guarantee correct no-loss/no-duplication behav

by the time its last retransmission is sent, which in the wor®n the other hand, two-packet and three-packet can accept
case, takes another MPL to arrive at the receiver. This worstuplicate connections. But, from a performance standpoint
case pattern repeats with data packet 2, which causes three-packet cuts the amount of duplication to about half th
the receiver's state timer to be re-started (refreshedyei of two-packet at the expense of doubling message overhead.
this worst-case scenario, a Delta-t receiver setitBne as They both provide higher goodput than Delta-t and TCP,

follows: and lower message overhead compared to TCP. Tihulke

Rtime =2x MPL+G (2) application can handle duplicates itself, depending oni¢ivel

o ) . of duplication that can be tolerated, three-packet may beemo

Thus, substitutingRtime in Equation (1), we have: attractive than two-packet.

Stime =3 x MPL+ G (3) . Performance Metrics and Results

I11. SIMULATION We consider the following metrics for evaluating the
) ) performance of the different connection management schkeme

A. Simulation Model As noted in Section I, connection management is separate fro

ta-transfer functions such as error / congestion / flovirotn
: , gi hat connection management may piggyback
protocols—two-packet, three-packet, five-packet and Etefta "OWEVET given th L9
in terms of correctness, robustness and performance. signaling information over data / acknowledgements, ist®n
. . tent connection-states may result in data loss or duptinatn

In our simulation model, all types of messages may g8l scenario of single-message connections, all thesdasetr
We use a two-state Markovian channel-delay model with fypjicate connections delivering duplicate data, or abrt
short-delay state and a long-delay state. The mean of S*}gﬁnections causing application data not to be delivereg ma
and long channel delays are 250 and 1000 milliseconggppen due to inconsistent connection-states at the sander
respectively. If the channel is in the short (long) channelyeceiver, or failure to open a connection.
delay state for a message, then with probability 0.8 it will ercenta : o

; ; ge of Correctly Received Datdeceiving a data

stay in the same state for the subsequent message, or W ssage correctly means that the data message is accepted

probability 0.2 it will transit to the long (short) channaélay ;
state. For any message, the delay is upper bounded by Sctr%i(t)k?é:rdlagstthﬁorregﬁmtiaéé{gdother words, the data message

Maximum Packet LifetimeM PL, which is set to 2 minutes. ) L
New connections arrive according to a Poisson proceééercentage of Duplicate DatdDuplicating a data message

We use event-based simulations to compare fo

at the rate of 10 connections/second. For all protocols, t ans that the receiver mistakenly accepted the data meessag

sequence number for each connection is randomly chos re than once. . e

uniformly from the range [0, 10000], and we set the maximuim Percentage of Lost DataA data message is lost if it is

number of retransmission attempts famy message to five. 10st in the network (channel) and an acknowledgment from
In the following subsections we present and discuss o previous connection (with the same sequence number) is

simulation results. Each plot is obtained by averaging t istakenly associated with it. ) .
independent runs, and each run attempts fo establish 1@dgercentage of Aborted Daté data message is aborteick(,

connections. All results are shown with 95% confidenc@ot delivered to the receiving application) if it exceeds it
intervals—in some p|otS, the intervals are too small to H@transmlSS|0n ||m|t, or its associated connection is tHubbe-

visible. cause the retransmission limit of any connection-managéme
message is exceeded (cf. Figure 2(b)).
B. Summary of Main Observations e Message RatéVNe define it as the total number of messages

. . . sent—data, connection-management messages, acknowledg-
e Delta-t is more robust than five-packet (ala TQRYder high ents and retransmissions—p?er time unit. ¢ 9

packet loss probability and highly variable channel delays Message Overheadie define it as the average number

The extra explicit connection-management messages of fi\kf* connection-management messaaes. acknowledaments and
packet make it vulnerable to connection aborts, resulting ? il geme ges, 9
fetransmissions sent during a connection.

increased percentage of aborted connections (and herteg, d S )

o Delta-t yields higher goodput (rate of successfully e Goodput We define it as the rate afew (unique) success-
tablished connections) than five-packet (ala TCEder ully established connections from the sender to receiver.
high/variable packet loss/delay conditions. Thus, Deltan In the following plots, we do not show the percentage of
provide better support for applications that are delaysiie l0st data, since there was no data loss for all protocolss Thi

as well. On the other hand, five-packet relies on explidiecause for each connection, we use a new sequence number
connection-management (handshaking) messages to \eaify that is randomly chosen from a large range. That makes
a received SYN message is not a duplicate (from an did unlikely that an (old) acknowledgment from a previous

connection). This makes five-packet (ala TCP) quite vulbiera connection carries the same sequence number as a new data
under bad network conditions. message that gets lost in the channel, such that it is wrongly

« Delta-t has less implementation complexity than five-pack&Sumed to have been successfully delivered.

(ala TCP)—Delta-t has less number of protocol states, and no To model the variability in channel delay and its impact on
separate connection-management messages. the estimation of round-trip time (RTT), which in turn affec

the per-packet Retransmission Timeout (RTO), we assunte tha
5This yields a range of RTT that is consistent with Internet soee- RTO is exponentially distributed with mean 1250 millisec-
ments [1]. onds. (This value is twice the average RTT over the simulated



-5~ Two Packet
—¥—Three Packet
60 TCP (Five Packet)
Delta—t @
~7

—5-Two Packet
—¥—Three Packet
TCP (Five Packet)

2 Delta-t

IS
3

% Duplicate Data
w
g

*

% Correctly Received Data

@
N
S

S

o N
~5-Two Packet
40[] =~ Three Packet
TCP (Five Packet)
Delta-t
0 01

3, Y,
) 0"
Packet Loss Probability

(a) (b) (€)

3 1600
~5-Two Packet 7 —S-Two Packet
—¥—Three Packet —¥- Three Packet
TCP (Five Packet) 1400 TCP (Five Packet)
Delta—t Delta-t
1200,

1000

0.2 03
Packet Loss Probability

800

D
15 .
600
4 ~5-Two Packet
400 q —#¥—Three Packet
q 0.16 TCP (Five Packet)

Delta-t y
0.4 0.5

Goodput (connections / time)

Message Rate (messages / time)
)
Message OH (messages / connection)

5 0.1 04 05 2005 01 0.4 0.5 0 0.1

0.2 0.3 0.2 03
Packet Loss Probability Packet Loss Probability

()

02 0.3
Packet Loss Probability

(d) . (€) .
Fig. 4: Effects of Varying Packet Loss Probability.

two-state delay channel.) We plot our performance metriedl protocols.

for varying packet loss probability. (Due to lack of spac& W The number of messages exchanged during the lifetime
refer the reader to [7] for additional simulation resultsyiag  of a connection is shown to increase in Figure 4(e), for all
RTO.) protocols, as the packet loss probability increases, Isecau

Figure 4(a) shows that as the packet loss probabilitf increased retransmissions. Delta-t and two-packet tase
increases, the percentage of correctly received data gignerlowest message overhead. In general, TCP can amortize the
decreases (three-packet is the exception as we explai. lateverhead of connection-management messages by allowing
This is because the percentage of aborted messages irerelsgy-lived flows and thus achieve as low overhead as Delta-t.
due to the per-message limit on number of retransmissiomfowever, this approach unnecessarily brings more contglexi
Delta-t's performance remains almost unaffected, showitg connection management. Delta-t natively establishes an
very high resiliency to packet loss. On the other hand, tllemoves connection states in a soft-state fashion.

performance of five-packet precipitously degrades once the The goodput is shown in Figure 4(f). For all protocols,

packetiloss probability exceeds 0.25. This is because of fi\gcept for five-packet, the goodput does not change much

packet's use of explicit connection-management messaggs,the packet loss probability increases—although time to

SYN and SYN+ACK, which when continually lost and theilsyccessfully complete a connection increases, the nunfber o

retransmission limit exceeded, the connection estabBstim concurrent ‘active connections also increases, yieldinglai

fails and so data delivery is aborted. goodput. On the other hand, five-packet (ala TCP) suffers fro
Consistent with the correctness of Delta-t and five-packétcreased percentage of aborted connections (data) eablic

Figure 4(b) shows that both do not accept duplicates. For theyond a packet loss probability of 0.25, which results in

three-packet protocol, data duplication decreases asatieep less data being delivered to the receiving applicationdiig

loss probability increases, since premature retransarisshat lower goodput.

cause duplicates are lost in the channel. This behavior of

three-packet results in increasing the percentage of cityre IV. RELATED WORK

received data. On the other hand, under two-packet, the per-

centage of duplicate data increases as packet loss pritpabil ~Approaches to connection management for reliable trans-

increases due to the loss of acknowledgments, which trigg@iort have been studied since the 70s fromoarectnesgoint

more retransmissions and hence duplicates. of view. Belsnes [2] studied the correctness of differerd-en
Figure 4(c) shows the probability of aborting data into-end protocols, such as two-packet, three-packet, facket

creases as the packet loss probability increases. Thig#ibe and five-packet (without the sender’s connection-staterim

the sender gives up delivering a message if it continues to Watson [15] built on the two-packet protocol and designed

lost and its retransmission limit is reached. Five-pacleta ( Delta-t, a pure timer-based protocol for reliable conreecti

TCP) is the least robust among all protocols. management. TCP [11] is fundamental_ly a flve-packet ex-
Figure 4(d) shows that the message rate increases in chjpnge protocol, with an added connection-state timeret th

protocols as the packet loss probability increases. Faekgt SEnder to ensure that the sender does not close the comectio

protocol has the highest message rate due to explicit dontR§fore the receiver does and all packets (including dugis)a

messages whereas Delta-t has the lowest message rate a died out. Other worke(g, [13], [9], [10]) studied
variants of timer-based and explicit connection-managgme



(handshake-based) protocols, and combinations thergaii a style. After a lull, once data transfer resumes, the cornoect
from a correctness point of view. state is immediately created.

None of these prior studies investigated reliable connec-
tion management from performancepoint of view. To the
best of our knowledge, this paper presents a first performanc Portd
comparison across a spectrum of reliable transport saistio
We evaluated various approaches in terms of many metrics,
stressing them to assess their robustness to extreme thetwor
conditions. (a) TCP Connection (b) RINA connections

Fig. 5: TCP vs. RINA Connection

Application Process

application
processes

V. A CLEAN-SLATE TRANSPORTARCHITECTURE

In this section, we highlight some features of a clean- VI. CoNcLusioN

slate transport design based on Delta-t, being developitwi  This paper presents the first performance and robustness
our Recursive InterNetwork Architecture (RINA) [5], [12].comparison of a spectum of reliable transport approaches, f
(Details will appear in a future paper.) pure soft-state (ala Delta-t), to pure hard-state (thieket),
In the TCP/IP architecture, TCP overloads the port-idnd hybrid hard-/soft-state (ala TCP). Our results show @ha
to be both a local handle, which identifies the applicatiosoft-state (SS) approach is more robust to high packet dosse
process, and connection-endpoint-id, which identifiesiéia- and channel delay variations as it does not rely on explicit
transfer connection. Figure 5a illustrates TCP’s manageméiandshaking messages for opening and closing connections.
of data-transfer connections. And by overloading the porfAn SS approach can more easily establish its connections
id again by giving it application semantics asaell-known and deliver its data reliably. Thus, an SS (ala Delta-t) ap-
destination port forces the receiver to rely on the sendepsoach represents the best choice for reliable application
id information for its identity/consistency checking, ltat especially those operating over bandwidth-constrainedy-€
than ids it generated, which makes it easier for attackepsone networks. We outlined features of a new transportiarch
to guess/spoof the source port and thwart any consisteriggture based on an SS approach—where explicit connection
checking by the receiver. man?gement for relia‘l(bility isfnot nheededh— that hexposea a
Unlike TCP/IP, RINA doesnot conflate port allocation SIMPpler common packet interface than what we have today
(which must be hard-state) with transport state synchedina  (UDP vs. TCP vs. T/TCIetc) to both reliable and unreliable
(which is soft-state based on Delta-t). In RINA, applicasio (unacknowledged), bulk and transactional applicationsure
do not listen to a well-known port. Rather an applicatio}Ork includes prototyping our new transport architectunel a
process requests service using the destination appligatiG®mparing it to existing architectures.
name. The local communication process returns a port-id wit . ,
only local significance to the user to use as an opaque handigknowledgment: This work was supported in part by
The request is translated into a set of policies for an EFQ¥SF grants CNS-0963974, CCF-0820138 and CSR-0720604.
(Error and Flow Control Protocol) flow. One end of the flowl'hanks to John Day for his support and valuable feedback.
is instantiated by creating an EFCP-instance, identifiechby REFERENCES
different local identifier, referred to as a connection-jemidt- ‘ , .
id (CEP-id). The local communication process then issues &l 9r-_A"$‘" J. Klag' F. Dd.sm'thvf?r:‘grg-ig&aélgggmﬂwgcf Round-
create-request to find the destination application and éf th |rﬂgrn:er?i/|séa2urreor%%%tI(r:gnscc’)ospages 579284 New YOC;rk"e,\rﬁ(f‘CUesoAfj
request is successful/accepted, allocates the flow. Fifbre 2003. ACM.
illustrates RINA's management of data-transfer conn@stio  [2] D. Belsnes. Single-Message CommunicatidEEE Transactions On

When the communication process at the destination gefs, 3_037'gg?'ncggﬁﬂS;,Q{g],-,g,‘jg’,‘;@gfjféokies_html.

the create-request, it determines if it can accept the sque[s] G.Boddapati, J. Day, I. Matta, and L. Chitkushev. Assesthe Security
The degree of access control is a matter of policy — it could of a Clean-Slate Internet Architecture. Technical RepddCB-TR-

be quite elaborate, or null like the current Internet. If the _ 2009-021, CS Department, Boston University, 2009.

. . . R . ] J. Day, |. Matta, and K. Mattar. Networking is IPC: A Guidi Principle
request is accepted, the destination communication moce@ to a Better Internet. ITCONEXT '08: Proceedings of the 2008 ACM

instantiates an EFCP-instance with its own local CEP-id, CoNEXT Conferencepages 1-6, New York, NY, USA, 2008. ACM.
and the result is returned to the requesting applicatiore Thi6] J. G. Fletcher and R. W. Watson. Mechanisms for a Relialiieet
source and destination CEP-ids are concatenated for use ﬁs Based ProtocolComputer Networks2:271-290, 1978.

- . : G. Gursun, |. Matta, and K. Mattar. On the Performance aobuRtness
a connection or flow id. If the create-request returns with of Managing Reliable Transport Connections. TechnicaldRePUCS-

negative response, it is determined whether the causeak fat  TR-2009-014, CS Department, Boston University, April 17 200
or not. If not fatal, the source communication process majgl J. C. S. Lui, V. Misra, and D. Rubenstein. On the RobusinefsSoft

; ; _ State ProtocolsICNP '04: Proceedings of the 12th IEEE International
modify the request and try again. If the create-requestmstu Conference on Network Protocolsages 50-60, 2004,

with a positive response, the CEP-id is bound to the por ] U. Maheshwari. HULA: An Efficient Protocol for Reliabledlivery of
id. Note that each end uses only ids that it has generated 10 Messages. Technical report, Cambridge, MA, USA, 1997.
distinguish the flow. [10] RFC1644. T/TCP — TCP Extensions for Transactions, 1994.
. . 11] RFC793. Transmission Control Protocol, September 1981.
By separating port allocation (and access control) frO{VBZ] RINA. Recursive InterNet Architecture, http://csr.bdu/rina/.
transport state synchronization, data transfer in RINA cdtB] A. Shankar and D. Lee. Minimum-latency Transport Protscwith

be cleanly done in a soft-state Delta-t fashion and thus can m;dg!gé’\é Incamation NumberdEEE/ACM Transactions on Network-
support reliable or unreliable, short or long transfershére is [14] R. Tomlinson. Selecting Sequence Numb@€M SIGCOMM/SIGOPS

a lullin the data transfer that is long enough to cause trantsp Interprocess Communications Worksh&gg), 1975.
timers to expire, the connection state is simply deleted bab] R. Watson. Timer-Based Mechanisms in Reliable Transpostocol
ports are not deallocated. Ports are managed in a hard-state Connection ManagemenComputer Networks5:47-56, 1981.



