
Revisiting A Soft-State Approach to Managing
Reliable Transport Connections

GONCA GURSUN IBRAHIM MATTA KARIM MATTAR

goncag@bu.edu matta@bu.edu kmattar@bu.edu

Abstract—We revisit the problem of connection management
for reliable transport as part of our clean-slate Recursive Inter-
Net Architecture (RINA) [5]. At one extreme, a pure soft-state
(SS) approach (as in Delta-t [15]) safely removes the state of
a connection at the sender and receiver once the state timers
expire without the need for explicit removal messages. And
new connections are established without an explicit handshaking
phase. On the other hand, a hybrid hard-state/soft-state (HS+SS)
approach (as in TCP) uses both explicit handshaking as well as
more limited timer-based management of the connection’s state.
In this paper, we consider the worst-case scenario of reliable
single-message communication. Using simulation, we evaluate
various approaches in terms of correctness (with respect to data
loss and duplication) and robustness to bad network conditions
(high message loss rate and variable channel delays). Our results
show that the SS approach is more robust, and has lower
message overhead and higher goodput. Thus, SS presents the best
choice for reliable applications, especially those operating over
bandwidth-constrained, error-prone networks. This result also
suggests that within a clean-slate transport architecture, explicit
connection messages for data reliability are not needed, and so a
simple common packet interface based on Delta-t—rather than
TCP vs. T/TCP vs. UDP,etc.— can be provided to support both
transactional and bulk, reliable and unreliable (unacknowledged)
applications.

I. I NTRODUCTION

Reliable end-to-end transport communication has been
studied since the 70’s and various mechanisms have made their
way into TCP [11], the reliable transport protocol widely used
on the Internet today. Many of these mechanisms provided
incremental patches to solve the fundamental problems of
data loss and duplication. Richard Watson in the 80’s [15]
provided a fundamental theory of reliable transport, whereby
connection management requires only timers bounded by a
small factor of the Maximum Packet Lifetime (MPL). Based
on this theory, Watsonet al. developed the Delta-t protocol
[6], which we classify as a pure soft-state (SS) protocol –
i.e., the state of a connection at the sender and receiver can be
safely removed once the connection-state timers expire without
the need for explicit removal messages. And new connections
are established without an explicit handshaking phase. On
the other hand, TCP uses both explicit handshaking as well
as more limited timer-based management of the connection’s
state. Thus, TCP’s approach, including variants such as HULA
[9] and T/TCP [10], can be viewed as a hybrid hard-state/soft-
state (HS+SS) protocol.

Motivated by the design of a clean-slate network archi-
tecture [5], we had to question the design of every aspect of
the current Internet architecture. In this paper, we question a
specific design aspect of TCP, that of connection management
for data reliability: Despite Watson’s theory, why does a
popular transport protocol, like TCP, manage its connections
using both a state timer at the sender as well as explicit
connection-management messages for opening and closing
connections?

Note that connection management is concerned with main-
taining consistent view of connection-states at the senderand

receiver to distinguish new from old connections. Though
connection management may leverage data and acknowl-
edgements to piggyback signaling information, and so data
may be falsely acknowledged (data loss) or duplicated, it
is a separatefunction from data-transfer functions such as
congestion control, error control, flow control,etc. Besides
data reliability, later in 1996, TCP’s three-way handshake
got overloaded with protection mechanisms against transport-
level attacks [3]. This results in the coupling of two different
mechanisms, state synchronization for reliability, and security.
In our RINA architecture, we decouple these two mechanisms
from each other. How the security issues are handled in RINA
is out of the scope of this paper and discussed in detail in [4].
In this paper, we focus only on connection management for
reliability, assuming single-message communication. We also
highlight some features of a clean-slate transport design.

Though over a decade ago, we have seen many pioneering
work in the area of reliable transport—see [14], [2], [6], [15],
[13] for examples—this body of work has focused on the
correctness aspects of reliable delivery but not performance.
From the correctness point of view, Watson’s theory states
that one can achieve reliability using an SS approach, as long
as one can bound exactly three timers for: (1) the maximum
time that a sender expends retransmitting a data packet (G),
(2) the maximum time that an acknowledgment is delayed
by the receiver (UAT), and (3) the maximum time that a
packet is allowed to live inside the network (MPL). Watson
argues that all these times are naturally bounded in actual
implementations. And since G and UAT are typically much
smaller than MPL, connection-state timers (at both sender
and receiver) can be bounded by a small factor of MPL.
Note that TCP itself, despite its use of explicit connection-
management messages, uses a connection-state timer (at the
sender). And TCPhas to use such a state timer in order to
operate correctly1 . Thus, from a correctness point of view,
there is no way around the need for state timers, only that
TCP relies on less of them.

Our Contribution:

From a performance point of view, to the best of our
knowledge, there is no work that compares the hybrid HS+SS
approach of TCP against the arguably simpler SS approach
of Delta-t. In this paper, we provide a first performance com-
parison study. We consider the worst-case scenario of reliable
single-messagecommunication and study issues related to
data loss / abort / duplication due to inconsistent connection-
states at the sender and receiver or failure to establish a
connection. Using simulation, we evaluate four approachesto
reliable transport in terms of correctness (with respect todata
loss and duplication) and robustness to bad network conditions
(high message loss rate and variable channel delays). Our

1 Obviously, this full-proof correctness assumes that the MPLguarantee
from the underlying network is not violated. Otherwise, onecan only show
correctness with high probability.



Host A

DATA x

Host B

ACK x

A�B closed

A→B closed

Host A

DATA x

Host B

ACK x

A�B closed

A→B closed

(a) Normal case

Host A

DATA x

Host B

ACK x

A→B closed

A→B closed

DATA x

Duplicate
accepted

Host A

DATA x

Host B

ACK x

A→B closed

A→B closed

DATA x

Duplicate
accepted

(b) Premature retransmission

Host A

DATA x

Host B

ACK x

DATA x
Duplicate 
accepted

A→B closed

Host A

DATA x

Host B

ACK x

DATA x
Duplicate 
accepted

A→B closed

(c) Acknowledgment loss

Fig. 1: Two-Packet Protocol

results show that the SS approach is more robust, and has
lower message overhead and higher goodput. Byrobustness,
we mean that performance does not precipitously degrade
under worse loss/delay conditions [8]. Thus, SS presents
the best choice for reliable applications, especially those
operating over bandwidth-constrained, error-prone networks.
This result also suggests that within a clean-slate transport
architecture, explicit connection messages for data reliability
are not needed, and so a simple common packet interface based
on Delta-t—rather than TCP vs. T/TCP vs. UDP,etc.— can
be provided to support both transactional and bulk, reliable
and unreliable (unacknowledged) applications.

Organization of the Paper:

The rest of the paper is organized as follows: Section II
reviews various approaches to reliable transport. SectionIII
presents our simulation model and results comparing four
reliable transport approaches (including Delta-t and TCP)
under varying packet loss probability, and varying channel
delays that may cause premature retransmissions. We review
related work in Section IV. We outline some features of a
clean-slate transport design in Section V, and conclude the
paper in Section VI.

II. RELIABLE TRANSPORTAPPROACHES

We describe the basic operation of different reliable trans-
port approaches for the worst-case scenario of reliably sending
a single message per conversation between a single sender
and a single receiver, over a channel that may lose or re-
order messages.2 We say “worst case” since information from
successive packets in a stream can only help the transport
protocol, e.g., to identify a missing packet in the stream
sequence or to keep the connection state alive (refreshed).

In what follows, we review four approaches to reliable
transport [2] that we evaluate in this paper. They repre-
sent a spectrum of solutions where the amount of explicit
connection-management messages and the use of connection-
state timers vary: (1) thetwo-packet(DATA and its ACK) pro-
tocol has no connection-state timers nor explicit connection-
management messages, (2) thethree-packetprotocol aug-
ments the two-packet protocol with an explicit connection-
management CLOSE message, (3) thefive-packet (TCP)
protocol augments the three-packet protocol with explicit
connection-management (SYN and SYN+ACK) messages and
a connection-state timer at the sender, and (4) theDelta-t
protocol augments two-packet using only connection-state
timers at both the sender and receiver. Delta-t and its prede-
cessor (two-packet) represent soft-state protocols, three-packet

2 Throughout the paper, we use the terms “message” and “packet” inter-
changeably. When we refer to “single-message” or “multi-message” conver-
sation/transfer/communication scenario, then we meandata messages.

represents a hard-state protocol, whereas five-packet represents
a hybrid hard-/soft-state protocol3 .

Note that although, from a correctness standpoint, we
note below that two-packet and three-packet may result in
duplicate connections being accepted, we include them in our
study to quantify, from a performance standpoint, how much
relative duplication they may cause for the benefit of a simpler
connection management.

Due to lack of space, we refer the reader to [7] for detailed
pseudo-codes (protocol state machines) of all protocols.

A. Two-Packet Protocol

To detect data (packet) loss, this protocol uses positive
acknowledgments. When there is data to send, the sender
opens a connection to the receiver and transmits the data
message. Opening a connection means that control information
is kept about the connection, which we refer to asstate infor-
mation. When the receiver receives the data message, it opens
a connection, delivers the data message to the application,
sends an acknowledgment message back to the sender, and
immediately closes the connection. Closing the connection
means removing the state information of the connection. A
normal conversation is illustrated in Figure 1(a).

If the sender does not receive the acknowledgment within
an estimated retransmission timeout (RTO) duration, then it
retransmits the data message. Figure 1(b) illustrates the case
where the retransmission timeout value is underestimated,thus
the sender prematurely retransmits the data message. Sincethe
receiver closes the connection right after it sends the acknowl-
edgment, it can not distinguish a premature retransmission
(duplicate) from new data (new connection). Thus, the receiver
accepts and delivers a duplicate to the application.

Another scenario that causes data duplication is when
the network (channel) loses the acknowledgment. Figure 1(c)
illustrates this case. If the acknowledgment is lost, the sender
retransmits the data message after RTO.

In [2], the correctness of the two-packet protocol is studied
in detail, including the case of data messages falsely ac-
knowledged (i.e., without being actually delivered) and hence
lost. This latter problem is solved by introducing sequence
numbers [14]. The sender appends to each new data message
a new sequence number that has not been recently used in its
communication with the receiver. A sequence number is not re-
used until all messages with that sequence number (including
duplicates) have left the network. Note that thisimplicitly
requires knowledge of some Maximum Packet Lifetime (MPL)
guaranteed by the network. Thus, the two-packet protocol
(augmented with sequence numbers) does not lose data but
may accept duplicates.

3 In this paper, we use “five-packet” and “TCP” interchangeably as we
augment the basic five-packet with TCP’s connection-state timer at the sender.



B. Three-Packet Protocol

To solve the duplication problem due to acknowledgment
loss, this protocol augments the two-packet protocol with an
acknowledgment for the ACK, which can be thought of as
an explicit CLOSE connection-management message sent by
the sender. When there is data to send, the sender opens a
connection to the receiver and transmits the data message.
When the receiver receives the data message, it opens a
connection, delivers the data message to the application, sends
an acknowledgment message back to the sender, and waits
for the CLOSE message from the sender before clearing the
connection-state. When the sender gets the acknowledgment,
it transmits the CLOSE message to the receiver and closes the
connection. The receiver in turn closes the connection onceit
gets the CLOSE message. Despite the extra CLOSE message,
this protocol does not solve the duplication problem. If a
delayed retransmission of a data message arrives at the receiver
right after the receiver closes the connection, the receiver
wrongly opens a new connection and accepts a duplicate.

C. Five-Packet Protocol

To avoid data duplication, two additional explicit
connection-management messages are introduced to open a
connection. Figure 2(a) illustrates a normal conversationof
the protocol (ala TCP). The sender transmits a synchronization
SYN message to initiate the connection. The receiver responds
to the SYN message with a SYN+ACK message. The sender
then transmits the data message, which also acknowledges the
receiver’s SYN, thus synchronizing the sender and receiver,
ensuring that the initial SYN message is not a duplicate (from
an old connection). Upon receiving the acknowledgment for
its data, the sender transmits an explicit CLOSE message and
closes the connection. Upon receiving the CLOSE message,
the receiver closes its end of the connection.

TCP follows this five-packet protocol. However, in TCP,
after the sender sends the CLOSE message, it does not
immediately close the connection, rather it waits for 2×MPL
to make sure that there is no packet in the network that belongs
to this connection [11].

Host A

SYN x

Host B

SYN y, ACK x

ACK y, DATA x

CLOSE x

data accepted

ACK x

A→B closed

A→B closed

2MPL

Host A

SYN x

Host B

SYN y, ACK x

ACK y, DATA x

CLOSE x

data accepted

ACK x

A→B closed

A→B closed

2MPL

(a) Normal case

Host A

SYN x

Host B

SYN y, ACK x

SYN x

SYN y, ACK x

SYN xRetransmission 
limit is reached

SYN x

Host A

SYN x

Host B

SYN y, ACK x

SYN x

SYN y, ACK x

SYN xRetransmission 
limit is reached

SYN x

(b) Connection abort

Fig. 2: Five-Packet Protocol

D. Delta-t Protocol

As noted above, the transport protocol inevitably assumes,
either implicitly or explicitly, that the underlying network
(channel) provides a guarantee on the Maximum Packet Life-
time (MPL). The Delta-t protocol [15] thus exclusively relies
on connection-management (state) timers that are bounded by
MPL. Delta-t is basically a two-packet protocol, augmented
by state timers at both the sender and receiver to solve the

problem of data duplication. Unlike the five-packet protocol,
there are no explicit (separate) messages to open and close the
connection.

The sender and the receiver state timers are set to guar-
antee that none of the messages (including duplicates) of the
active connection will arrive to the ends after they close the
connection. Figure 3(a) illustrates the connection state lifetime
at the sender and the receiver. The sender starts its state timer
whenever it sends a data message (new or retransmission).
The connection at the sender should be open long enough—
denoted byStime—to receive the acknowledgment, which
could be transmitted in the worst-case right before the receiver
state lifetime—denoted byRtime—expires. Since the lifetime
of a packet is bounded by MPL, we have the following
relationship:

Stime = Rtime + MPL (1)

Host A Host B

MPL

������

ACK x

Stime
Rtime

Host A Host B

MPL

������

ACK x

Stime
Rtime

(a) State Timers

Host A

Last DATA x

Host B

ACK DATA x

Last DATA x+1

MPL

G = n x RTT

MPL

resume G for DATA x+1

G for DATA x expires

DATA x+1 attempts lost

ACK x+1 lost

Worst-case pattern 
repeats

First DATA x+1

First DATA x+2

suspend G for DATA x+1 Rtime starts

Rtime ends

Host A

Last DATA x

Host B

ACK DATA x

Last DATA x+1

MPL

G = n x RTT

MPL

resume G for DATA x+1

G for DATA x expires

DATA x+1 attempts lost

ACK x+1 lost

Worst-case pattern 
repeats

First DATA x+1

First DATA x+2

suspend G for DATA x+1 Rtime starts

Rtime ends

(b) Setting Timers

Fig. 3: Delta-t Protocol

The receiver starts its connection-state timer whenever it
receives (and accepts) a new data message. The receiver state
timer should be running long enough to receive all possible
retransmissions of the data message in the presence of an
unreliable (lossy) channel. This allows the receiver to catch
(recognize) duplicates of the data message. The connectionis
closed at the receiver after the last possible acknowledgment
for the connection is sent. Figure 3(b), reproduced from [6],
illustrates the worst-case multi-message conversation between
the sender and receiver4 . Denote byG, the maximum time a
sender keeps retransmitting a data message before it gives up
and aborts the connection. Ifn is the maximum number of
retransmissions for each data message, thenG = n×RTO ≈

n × RTT . According to the Delta-t protocol [6], each data
packet has a timer initialized toG when it is first transmitted.
Whenever a data packet’sG-timer expires, theG-timers of all
other data packets are frozen hoping to successfully get the
acknowledgment, otherwise the connection is aborted and the
application is informed.

Figure 3(b) shows the multi-message scenario when a new
data packet (whose sequence number isx + 1) is received
instantly, so in the worst case,Rtime is started as early
as possible. Due to consecutive losses, theG-timer of the
previous data packet (whose sequence number isx) expires
while waiting for the acknowledgment ACKx for its last
retransmission attempt, which in the worst case, will take MPL
to arrive. At this time instant, Delta-t [6] freezes theG-timers
of all oustanding packets, thus data packetx + 1 has not yet
used up its maximum delivery timeG. Now when ACK x

4 For simplicity, we assume that the receiver does not delay sending its
acknowledgment.



arrives, in the worst case, due to ACK losses, data packet
x + 1 keeps getting retransmitted until all itsG is consumed
by the time its last retransmission is sent, which in the worst
case, takes another MPL to arrive at the receiver. This worst-
case pattern repeats with data packetx + 2, which causes
the receiver’s state timer to be re-started (refreshed). Given
this worst-case scenario, a Delta-t receiver sets itsRtime as
follows:

Rtime = 2 × MPL + G (2)

Thus, substitutingRtime in Equation (1), we have:

Stime = 3 × MPL + G (3)

III. SIMULATION

A. Simulation Model

We use event-based simulations to compare four
protocols—two-packet, three-packet, five-packet and Delta-t—
in terms of correctness, robustness and performance.

In our simulation model, all types of messages may get
lost with probabilityp, or delayed in the underlying channel.
We use a two-state Markovian channel-delay model with a
short-delay state and a long-delay state. The mean of short
and long channel delays are 250 and 1000 milliseconds,
respectively.5 If the channel is in the short (long) channel-
delay state for a message, then with probability 0.8 it will
stay in the same state for the subsequent message, or with
probability 0.2 it will transit to the long (short) channel-delay
state. For any message, the delay is upper bounded by the
Maximum Packet Lifetime,MPL, which is set to 2 minutes.

New connections arrive according to a Poisson process
at the rate of 10 connections/second. For all protocols, the
sequence number for each connection is randomly chosen,
uniformly from the range [0, 10000], and we set the maximum
number of retransmission attempts forany message to five.

In the following subsections we present and discuss our
simulation results. Each plot is obtained by averaging ten
independent runs, and each run attempts to establish 1000
connections. All results are shown with 95% confidence
intervals—in some plots, the intervals are too small to be
visible.

B. Summary of Main Observations

• Delta-t is more robust than five-packet (ala TCP)under high
packet loss probability and highly variable channel delays.
The extra explicit connection-management messages of five-
packet make it vulnerable to connection aborts, resulting in
increased percentage of aborted connections (and hence, data).
• Delta-t yields higher goodput (rate of successfully es-
tablished connections) than five-packet (ala TCP)under
high/variable packet loss/delay conditions. Thus, Delta-t can
provide better support for applications that are delay-sensitive
as well. On the other hand, five-packet relies on explicit
connection-management (handshaking) messages to verify that
a received SYN message is not a duplicate (from an old
connection). This makes five-packet (ala TCP) quite vulnerable
under bad network conditions.
• Delta-t has less implementation complexity than five-packet
(ala TCP)—Delta-t has less number of protocol states, and no
separate connection-management messages.

5 This yields a range of RTT that is consistent with Internet measure-
ments [1].

• From a correctness standpoint, both Delta-t and five-packet
(ala TCP) guarantee correct no-loss/no-duplication behavior.
On the other hand, two-packet and three-packet can accept
duplicate connections. But, from a performance standpoint,
three-packet cuts the amount of duplication to about half that
of two-packet at the expense of doubling message overhead.
They both provide higher goodput than Delta-t and TCP,
and lower message overhead compared to TCP. Thus,if the
application can handle duplicates itself, depending on thelevel
of duplication that can be tolerated, three-packet may be more
attractive than two-packet.

C. Performance Metrics and Results

We consider the following metrics for evaluating the
performance of the different connection management schemes.
As noted in Section I, connection management is separate from
data-transfer functions such as error / congestion / flow control.
However, given that connection management may piggyback
signaling information over data / acknowledgements, inconsis-
tent connection-states may result in data loss or duplication. In
our scenario of single-message connections, all these metrics
are to be considered connection management specific,i.e.,
duplicate connections delivering duplicate data, or aborted
connections causing application data not to be delivered may
happen due to inconsistent connection-states at the senderand
receiver, or failure to open a connection.
• Percentage of Correctly Received Data: Receiving a data
message correctly means that the data message is accepted
exactly onceby the receiver. In other words, the data message
was neither lost nor duplicated.
• Percentage of Duplicate Data: Duplicating a data message
means that the receiver mistakenly accepted the data message
more than once.
• Percentage of Lost Data: A data message is lost if it is
lost in the network (channel) and an acknowledgment from
a previous connection (with the same sequence number) is
mistakenly associated with it.
• Percentage of Aborted Data: A data message is aborted (i.e.,
not delivered to the receiving application) if it exceeds its
retransmission limit, or its associated connection is aborted be-
cause the retransmission limit of any connection-management
message is exceeded (cf. Figure 2(b)).
• Message Rate: We define it as the total number of messages
sent—data, connection-management messages, acknowledg-
ments and retransmissions—per time unit.
• Message Overhead: We define it as the average number
of connection-management messages, acknowledgments and
retransmissions sent during a connection.
• Goodput: We define it as the rate ofnew (unique) success-
fully established connections from the sender to receiver.

In the following plots, we do not show the percentage of
lost data, since there was no data loss for all protocols. This is
because for each connection, we use a new sequence number
that is randomly chosen from a large range. That makes
it unlikely that an (old) acknowledgment from a previous
connection carries the same sequence number as a new data
message that gets lost in the channel, such that it is wrongly
assumed to have been successfully delivered.

To model the variability in channel delay and its impact on
the estimation of round-trip time (RTT), which in turn affects
the per-packet Retransmission Timeout (RTO), we assume that
RTO is exponentially distributed with mean 1250 millisec-
onds. (This value is twice the average RTT over the simulated



0 0.1 0.2 0.3 0.4 0.5
30

40

50

60

70

80

90

100

%
 C

or
re

ct
ly

 R
ec

ei
ve

d 
D

at
a

Packet Loss Probability

 

 

Two Packet
Three Packet
TCP (Five Packet)
Delta−t

(a)

0 0.1 0.2 0.3 0.4 0.5
0

10

20

30

40

50

60

70

%
 D

up
lic

at
e 

D
at

a

Packet Loss Probability

 

 

Two Packet
Three Packet
TCP (Five Packet)
Delta−t

(b)

0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

20

25

%
 A

bo
rt

ed
 D

at
a

Packet Loss Probability

 

 

Two Packet
Three Packet
TCP (Five Packet)
Delta−t

(c)

0 0.1 0.2 0.3 0.4 0.5
0.5

1

1.5

2

2.5

3

3.5

M
es

sa
ge

 R
at

e 
(m

es
sa

ge
s 

/ t
im

e)

Packet Loss Probability

 

 

Two Packet
Three Packet
TCP (Five Packet)
Delta−t

(d)

0 0.1 0.2 0.3 0.4 0.5
200

400

600

800

1000

1200

1400

1600
M

es
sa

ge
 O

H
 (

m
es

sa
ge

s 
/ c

on
ne

ct
io

n)

Packet Loss Probability

 

 

Two Packet
Three Packet
TCP (Five Packet)
Delta−t

(e)

0 0.1 0.2 0.3 0.4 0.5

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

G
oo

dp
ut

 (
co

nn
ec

tio
ns

 / 
tim

e)

Packet Loss Probability

 

 

Two Packet
Three Packet
TCP (Five Packet)
Delta−t

(f)
Fig. 4: Effects of Varying Packet Loss Probability.

two-state delay channel.) We plot our performance metrics
for varying packet loss probability. (Due to lack of space, we
refer the reader to [7] for additional simulation results varying
RTO.)

Figure 4(a) shows that as the packet loss probability
increases, the percentage of correctly received data generally
decreases (three-packet is the exception as we explain later).
This is because the percentage of aborted messages increases
due to the per-message limit on number of retransmissions.
Delta-t’s performance remains almost unaffected, showing
very high resiliency to packet loss. On the other hand, the
performance of five-packet precipitously degrades once the
packet loss probability exceeds 0.25. This is because of five-
packet’s use of explicit connection-management messages,
SYN and SYN+ACK, which when continually lost and their
retransmission limit exceeded, the connection establishment
fails and so data delivery is aborted.

Consistent with the correctness of Delta-t and five-packet,
Figure 4(b) shows that both do not accept duplicates. For the
three-packet protocol, data duplication decreases as the packet
loss probability increases, since premature retransmissions that
cause duplicates are lost in the channel. This behavior of
three-packet results in increasing the percentage of correctly
received data. On the other hand, under two-packet, the per-
centage of duplicate data increases as packet loss probability
increases due to the loss of acknowledgments, which triggers
more retransmissions and hence duplicates.

Figure 4(c) shows the probability of aborting data in-
creases as the packet loss probability increases. This is because
the sender gives up delivering a message if it continues to be
lost and its retransmission limit is reached. Five-packet (ala
TCP) is the least robust among all protocols.

Figure 4(d) shows that the message rate increases in all
protocols as the packet loss probability increases. Five-packet
protocol has the highest message rate due to explicit control
messages whereas Delta-t has the lowest message rate among

all protocols.
The number of messages exchanged during the lifetime

of a connection is shown to increase in Figure 4(e), for all
protocols, as the packet loss probability increases, because
of increased retransmissions. Delta-t and two-packet havethe
lowest message overhead. In general, TCP can amortize the
overhead of connection-management messages by allowing
long-lived flows and thus achieve as low overhead as Delta-t.
However, this approach unnecessarily brings more complexity
to connection management. Delta-t natively establishes and
removes connection states in a soft-state fashion.

The goodput is shown in Figure 4(f). For all protocols,
except for five-packet, the goodput does not change much
as the packet loss probability increases—although time to
successfully complete a connection increases, the number of
concurrent active connections also increases, yielding similar
goodput. On the other hand, five-packet (ala TCP) suffers from
increased percentage of aborted connections (data), noticeably
beyond a packet loss probability of 0.25, which results in
less data being delivered to the receiving application, yielding
lower goodput.

IV. RELATED WORK

Approaches to connection management for reliable trans-
port have been studied since the 70s from acorrectnesspoint
of view. Belsnes [2] studied the correctness of different end-
to-end protocols, such as two-packet, three-packet, four-packet
and five-packet (without the sender’s connection-state timer).
Watson [15] built on the two-packet protocol and designed
Delta-t, a pure timer-based protocol for reliable connection
management. TCP [11] is fundamentally a five-packet ex-
change protocol, with an added connection-state timer at the
sender to ensure that the sender does not close the connection
before the receiver does and all packets (including duplicates)
have died out. Other work (e.g., [13], [9], [10]) studied
variants of timer-based and explicit connection-management



(handshake-based) protocols, and combinations thereof, again
from a correctness point of view.

None of these prior studies investigated reliable connec-
tion management from aperformancepoint of view. To the
best of our knowledge, this paper presents a first performance
comparison across a spectrum of reliable transport solutions.
We evaluated various approaches in terms of many metrics,
stressing them to assess their robustness to extreme network
conditions.

V. A CLEAN-SLATE TRANSPORTARCHITECTURE

In this section, we highlight some features of a clean-
slate transport design based on Delta-t, being developed within
our Recursive InterNetwork Architecture (RINA) [5], [12].
(Details will appear in a future paper.)

In the TCP/IP architecture, TCP overloads the port-id
to be both a local handle, which identifies the application
process, and connection-endpoint-id, which identifies thedata-
transfer connection. Figure 5a illustrates TCP’s management
of data-transfer connections. And by overloading the port-
id again by giving it application semantics as awell-known
destination port forces the receiver to rely on the sender’s
id information for its identity/consistency checking, rather
than ids it generated, which makes it easier for attackers
to guess/spoof the source port and thwart any consistency
checking by the receiver.

Unlike TCP/IP, RINA doesnot conflate port allocation
(which must be hard-state) with transport state synchronization
(which is soft-state based on Delta-t). In RINA, applications
do not listen to a well-known port. Rather an application
process requests service using the destination application-
name. The local communication process returns a port-id with
only local significance to the user to use as an opaque handle.
The request is translated into a set of policies for an EFCP
(Error and Flow Control Protocol) flow. One end of the flow
is instantiated by creating an EFCP-instance, identified bya
different local identifier, referred to as a connection-endpoint-
id (CEP-id). The local communication process then issues a
create-request to find the destination application and if the
request is successful/accepted, allocates the flow. Figure5b
illustrates RINA’s management of data-transfer connections.

When the communication process at the destination gets
the create-request, it determines if it can accept the request.
The degree of access control is a matter of policy — it could
be quite elaborate, or null like the current Internet. If the
request is accepted, the destination communication process
instantiates an EFCP-instance with its own local CEP-id,
and the result is returned to the requesting application. The
source and destination CEP-ids are concatenated for use as
a connection or flow id. If the create-request returns with a
negative response, it is determined whether the cause is fatal
or not. If not fatal, the source communication process may
modify the request and try again. If the create-request returns
with a positive response, the CEP-id is bound to the port-
id. Note that each end uses only ids that it has generated to
distinguish the flow.

By separating port allocation (and access control) from
transport state synchronization, data transfer in RINA can
be cleanly done in a soft-state Delta-t fashion and thus can
support reliable or unreliable, short or long transfers. Ifthere is
a lull in the data transfer that is long enough to cause transport
timers to expire, the connection state is simply deleted but
ports are not deallocated. Ports are managed in a hard-state

style. After a lull, once data transfer resumes, the connection
state is immediately created.

(a) TCP Connection (b) RINA connections

Fig. 5: TCP vs. RINA Connection

VI. CONCLUSION

This paper presents the first performance and robustness
comparison of a spectum of reliable transport approaches, from
pure soft-state (ala Delta-t), to pure hard-state (three-packet),
and hybrid hard-/soft-state (ala TCP). Our results show that a
soft-state (SS) approach is more robust to high packet losses
and channel delay variations as it does not rely on explicit
handshaking messages for opening and closing connections.
An SS approach can more easily establish its connections
and deliver its data reliably. Thus, an SS (ala Delta-t) ap-
proach represents the best choice for reliable applications,
especially those operating over bandwidth-constrained, error-
prone networks. We outlined features of a new transport archi-
tecture based on an SS approach—where explicit connection
management for reliability is not needed— that exposes a
simpler common packet interface than what we have today
(UDP vs. TCP vs. T/TCPetc.) to both reliable and unreliable
(unacknowledged), bulk and transactional applications. Future
work includes prototyping our new transport architecture and
comparing it to existing architectures.

Acknowledgment: This work was supported in part by
NSF grants CNS-0963974, CCF-0820138 and CSR-0720604.
Thanks to John Day for his support and valuable feedback.

REFERENCES

[1] J. Aikat, J. Kaur, F. D. Smith, and K. Jeffay. Variability in TCP Round-
Trip Times. InProceedings of the3rd ACM SIGCOMM Conference on
Internet Measurement (IMC’03), pages 279–284, New York, NY, USA,
2003. ACM.

[2] D. Belsnes. Single-Message Communication.IEEE Transactions On
Communications, Vol. COM-24, 1976.

[3] D. J. Bernstein. http://cr.yp.to/syncookies.html.
[4] G. Boddapati, J. Day, I. Matta, and L. Chitkushev. Assessing the Security

of a Clean-Slate Internet Architecture. Technical Report BUCS-TR-
2009-021, CS Department, Boston University, 2009.

[5] J. Day, I. Matta, and K. Mattar. Networking is IPC: A Guiding Principle
to a Better Internet. InCoNEXT ’08: Proceedings of the 2008 ACM
CoNEXT Conference, pages 1–6, New York, NY, USA, 2008. ACM.

[6] J. G. Fletcher and R. W. Watson. Mechanisms for a Reliable Timer-
Based Protocol.Computer Networks, 2:271–290, 1978.

[7] G. Gursun, I. Matta, and K. Mattar. On the Performance and Robustness
of Managing Reliable Transport Connections. Technical Report BUCS-
TR-2009-014, CS Department, Boston University, April 17 2009.

[8] J. C. S. Lui, V. Misra, and D. Rubenstein. On the Robustness of Soft
State Protocols.ICNP ’04: Proceedings of the 12th IEEE International
Conference on Network Protocols, pages 50–60, 2004.

[9] U. Maheshwari. HULA: An Efficient Protocol for Reliable Delivery of
Messages. Technical report, Cambridge, MA, USA, 1997.

[10] RFC1644. T/TCP – TCP Extensions for Transactions, July1994.
[11] RFC793. Transmission Control Protocol, September 1981.
[12] RINA. Recursive InterNet Architecture, http://csr.bu.edu/rina/.
[13] A. Shankar and D. Lee. Minimum-latency Transport Protocols with

Modulo-N Incarnation Numbers.IEEE/ACM Transactions on Network-
ing, 3:255–268, 1995.

[14] R. Tomlinson. Selecting Sequence Numbers.ACM SIGCOMM/SIGOPS
Interprocess Communications Workshop, 9(3), 1975.

[15] R. Watson. Timer-Based Mechanisms in Reliable TransportProtocol
Connection Management.Computer Networks, 5:47–56, 1981.


